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We now know RNA can survive the harsh environment of biofluids when encapsulated in
vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular
RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form
the basis of new strategies for disease treatment. The Extracellular RNA Communication
Consortium (ERCC) hosted a two-day online workshop (April 19–20, 2021) on the unique
challenges of exRNA data analysis. The goal was to foster an open dialog about best
practices and discuss open problems in the field, focusing initially on small exRNA
sequencing data. Video recordings of workshop presentations and discussions are
available (https://exRNA.org/exRNAdata2021-videos/). There were three target
audiences: experimentalists who generate exRNA sequencing data, computational and
data scientists who work with those groups to analyze their data, and experimental and
data scientists new to the field. Here we summarize issues explored during the workshop,
including progress on an effort to develop an exRNA data analysis challenge to engage the
community in solving some of these open problems.
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INTRODUCTION

In 2013, the NIH Common Fund launched the Extracellular RNA
Communication Consortium to stimulate research into the
fundamental biology of exRNA and its clinical applications in
disease diagnosis and treatment. One product of the first stage,
ERCC1 (2013–2018), is the exRNA Atlas, a database of small
RNA-sequencing and RT-qPCR data. To date, the Atlas holds
over 7,700 samples from 14 biofluids and 16 disease conditions
(Subramanian et al., 2015; Murillo et al., 2019). The current stage,
ERCC2, focuses on development of technologies to characterize
exRNA carriers and to isolate and characterize the contents of
individual extracellular vesicles (EVs). A key strength of the
exRNA Atlas is that the small RNA-seq datasets are uniformly
processed by the extracellular RNA processing toolkit (exceRpt)
(Rozowsky et al., 2019). A hard-learned lesson from ERCC1 was
the difficulty of eradicating systematic biases from the data, which
makes it difficult to compare exRNA profiles across conditions.
The April 2021 online workshop was held to address these and
other problems in exRNA data analysis (Figure 1).

OPEN PROBLEMS IN exRNA DATA
ANALYSIS

Rob Kitchen opened the workshop by outlining open problems in
exRNA data analysis. One key challenge is that exRNA data
quality varies widely and systematically between different
experimental methods. Isolating and purifying exRNA and
extracellular vesicles (EVs) from experimental samples is itself
difficult, and RNA isolation kits used for these tasks are known to
be a major source of variability in the resulting exRNA data.
Compensating for this variation is a central challenge, as each kit
and RNA sequencing method has different sequence biases that
must accounted for when doing larger analyses (Murillo et al.,
2019; Srinivasan et al., 2019). Dr. Kitchen stressed that
comparison of the relative amounts of exRNAs across samples
should be attempted in samples prepared using identical methods
wherever possible. Even then, large sample-to-sample variation in
exRNA carrier abundance persists, obscuring biological signal in
case-control studies (Murillo et al., 2019).

Another central question of interest in exRNA and EV biology
is determining tissue and cell type of origin of different clusters
of exRNAs in a biofluid. Dr. Kitchen argues that it might be
possible in peripheral biofluids like urine and saliva, but more
challenging in circulating blood serum and plasma, where the
exRNA complement may be too diverse to parse. For vesicular
exRNAs, the problem should be made simpler by improvements
in experimental techniques to isolate EV sub-fractions, such as
selecting for EVs with cell-type-specific surface proteins. As
fractionation techniques improve, however, it will be necessary
to compensate for variable enrichment efficiency.

Juan Pablo Tosar focused specifically on the quality of non-
coding RNA annotations. He outlined how the mechanisms of
biogenesis of miRNA and piRNA serve as the basis of existing
annotations like miRbase. The problem is that such databases
often lack strict curation, resulting inmany sequences that are not

miRNAs or piRNAs under any reasonable definition. Tosar
described two examples from miRbase annotations, showing
that miR-1202 is, in fact the small nucleolar RNA,
SNORD126, and miR-1246, a microRNA enriched in EVs, is
likely a contaminant from fetal bovine serum (FBS) in the cell
culture media and likely fragment of the small nuclear RNA
RNU2-1 (Sakha et al., 2016; Tosar et al., 2017). This is not a
problem of miRbase itself, which is designed as a community-
driven repository of putative miRNA sequences, providing
minimal quality control at the point of submission (Kozomara
et al., 2019). His proposed solution to the problem of mis-
annotation is to use a curated miRNA database like
MirGeneDB (Fromm et al., 2015; Fromm et al., 2020),
resulting in a smaller number of higher quality miRNA calls.

Tosar emphasized that piRNAs have a complex biogenesis that
imposes a strong bias to start with U or to have A in the 10th
position, and they are expressed from genomic clusters with a
high density of piRNA sequences (Czech et al., 2018). PiRNA are
mostly expressed in gonads and early embryos where their main
role is to dampen the expression of transposable elements.
However, existing piRNA databases include a very small
number (<1%) of contaminating sequences that do not match
these criteria and have 100% overlap with other ncRNA families
(Tosar et al., 2018a). Findings of piRNA expression in cancers
and biofluids are very often highly enriched in sequences from
that set of false positive contaminants (Tosar et al., 2018a). For
example, the level of piR-54265 in the serum of colorectal cancer
patients has been found to be predictive of tumor relapse after
surgery. Its value as a biomarker notwithstanding, piR-54265 is,
in fact, a mis-annotated full-length snoRNA, SNORD57 (Tosar
et al., 2021). Going back to the cell type of origin problem
described above, while piRNA expression might be cancer-
specific, snoRNAs are ubiquitously expressed. Consequently,
annotation accuracy affects biological interpretation of the
data. The final message is that it is important to realize our
bioinformatics is only as strong as our RNA annotations.

exRNA DATA SOURCES

In a session on exRNA data sources, Matt Roth gave an overview
of the ERCC’s exRNA Atlas (Subramanian et al., 2015; Murillo
et al., 2019), a curated catalog of exRNA sequencing and qPCR
data generated from a wide array of biofluids and disease states.
Roth outlined features of the exRNA Atlas that facilitate
accessing, querying, interpreting, and reusing experimental
data and sample metadata. He also described ongoing efforts
to expand Atlas content to include data and metadata from
additional exRNA technologies being developed as part of
ERCC2, and to integrate exRNA Atlas data into the NIH
Common Fund Data Ecosystem (https://app.nih-cfde.org/).
Justin Chang gave a preview of the exRNA Explorer tool, a
data exploration and visualization tool that will soon be
integrated into the public exRNA Atlas. Joel Rozowsky
later outlined the exceRpt pipeline used to process short
exRNA sequencing data in the exRNA Atlas (Rozowsky et al.,
2019).
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Pieter Mestdagh presented the Human Biofluid RNA Atlas
(Hulstaert et al., 2020), which characterizes and compares exRNA
transcriptome profiles in a wide variety of biological fluids (n �
20) using both small RNA-sequencing and mRNA-capture
sequencing. Introducing short and long synthetic spike-in
RNAs before and after RNA extraction, enabled comparison of
the absolute miRNA and mRNA content between samples,
revealing large differences between fluids. Mestdagh also
summarized efforts to identify the relative contribution of
different tissues to exRNA transcriptomes and how this varied
across biofluids. Deconstruction of exRNA profiles into
contributing tissues can be achieved through computational
deconvolution, a topic explored in-depth later in the
workshop. He showed that the accuracy of deconvolution
depends on several factors, including 1) proper transformation
and normalization of the exRNA-seq read count, 2) choice of
deconvolution algorithm and 3) quality and completeness of the
reference data. Mestdagh also presented evidence suggesting that
circular RNAs (circRNAs) are present in biofluids, potentially at a
higher proportional abundance relative to linear transcripts than
they are in cells and tissues.

Klaas Max discussed healthy reference profiles of
extracellular miRNA in serum and plasma (Max et al.,
2018). Based on an initial cohort of 13 individuals and a
second larger cohort of over 200 individuals, they found
very little variation between males and females, but more
noticeable differences between serum and plasma samples.
Interestingly, they found that the exRNA profiles of
pregnant women were distinct from non-pregnant women,
and that the variant miRNAs could predict not only whether
a woman were pregnant, but in which stage of pregnancy they
were in. Among the most variable miRNAs was cluster-miR-
498(46), which was upregulated in pregnant versus non-
pregnant women, increasing between 50- and 250-fold from
first to third trimester. Max noted that many of the most
variable miRNAs in healthy subjects were cell-lineage-
specific miRNAs of the liver, neuroendocrine organs, adrenal

glands, epithelial cells and muscle. Abundance of several such
miRNAs sharing a common origin were moderately correlated.
Although they identified additional sets of variably expressed
miRNAs, Max noted that few miRNAs are known to be cell-
lineage-specific, which complicates methods to deconvolute
and identify tissues of origin. Plasma subfractionation by
ultracentrifugation to enrich for non-hematopoietic miRNAs
did not result in a strong enrichment of organ- or cell-type-
specific miRNAs.

exRNA-SEQ PROCESSING

Exogenous exRNA
Karolina Elżbieta Kaczor-Urbanowicz discussed bioinformatic
analysis of salivary RNA sequencing data (Kaczor-Urbanowicz
et al., 2018) in the context of a search for exRNA biomarkers of
gastric cancer (GC). PI David Wong, co-PI Yong Kim and
collaborator Sung Kim in South Korea collected 2000 saliva
samples from GC patients and non-GC controls and noticed that
saliva has a much higher proportion of microbial RNA than other
biofluids. In fact, quality control (QC) criteria for the ERCC’s
exceRpt pipeline had to be modified to account for the
disproportionately high microbial RNA content. The research
team evaluated whether to map RNA-seq reads to microbial
RNA before or after mapping to the human genome. They
found that the best approach for salivary long RNA-seq data is
to map to the microbiome first and remove the aligned bacterial
reads before mapping to human. The research team also found that
Asian-specific strains of theHelicobacter pylori bacteria and Epstein-
Barr virus associated with GC for determining disease state when
analyzing saliva samples of Asian origin. This highlights the need for
ensuring ethnic diversity in human genome and microbiome
sequences in the age of personalized medicine. More recently, the
researchers have found that performing deconvolution and variance
partition analyses to isolate extraneous sources of variation improves
their ability to identify exRNA biomarkers.

FIGURE 1 | Key topics discussed during the 2021 ERCC exRNA data analysis workshop.
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Considerations for exRNA Library
Preparation
Ryan Spengler emphasized that standard small RNA-seq library
preparation methods require RNAs to have 5′ phosphate and 3′
hydroxyl groups, but a substantial fraction of exRNAs lack these
end chemistries (Giraldez et al., 2019). By incubating the RNA
pool with polynucleotide kinase (PNK) before adapter ligation,
Spengler showed that exRNA transcriptome profiles markedly
changed, which, for example, significantly increased the number
of mRNA and lncRNA fragments found in plasma. These
fragments likely originate from specific regions of mRNA
transcripts that are protected from RNase degradation, and
similar regions are protected across individuals. Careful filtering
of reads mapping to repetitive and non-human sequences is
essential for identification of bona fide mRNA fragments. In a
longitudinal study of hematopoietic stem cell transplant recipients,
mRNA fragments segregated into several distinct temporal co-
expression signatures associated with the transcripts’ likely tissue of
origin (namely, liver and bone marrow).

Biomarker Discovery
Leonora Balaj discussed efforts to identify extracellular mRNA
signatures associated with glioma. They examined long RNA-seq
reads from EVs isolated from glioma patients compared to healthy
individuals matched by age and sex. They also demonstrated a two-
hybrid capturemethodwhich uses exome capture panels to enrich for
exRNA reads from protein-coding mRNAs. Including a ribosomal
RNA depletion step, they were able to substantially enrich for mRNA
sequences and largely eliminate the non-mRNA reads that dominate
non-captured libraries. They also performed long mRNA-seq on
exosomal RNAs isolated from patients before and after undergoing
dacomitinib treatment for recurrent glioblastoma and found
exosomal mRNA signatures that distinguished responders from
non-responders to the treatment. Importantly, in follow-up
validation cohorts, these signatures showed promise in predicting
which individuals would respond to treatment.

De Novo Discovery of Small RNA Clusters
Bojan Losic presented a method for the discovery of small RNA
clusters (smRCs, pronounced smirks) expressed in circulating
liver cancer EVs (von Felden et al., 2021). The method is de novo,
not relying on mapping reads to annotated RNAs. In fact, they
found that most expressed smRCs emanate from unannotated
genomic regions in a cell-type- and biofluid-specific manner and
have EV-specific properties which can be exploited for biomarker
discovery. Three such smRCs were found to be strong biomarkers
for early-stage liver cancer (hepatocellular carcinoma, HCC),
significantly outperforming the clinical surveillance standard in
an independent Phase 2 clinical study. These findings raise the
possibility of a blood-only, operator independent, minimally
invasive liquid biopsy test for HCC.

exRNA AND RNA BINDING PROTEINS

Extracellular RNA that circulates in biofluids must be shielded
from the harsh environment, particularly from enzymes that digest

RNA (RNases). Some exRNAs are resistant to RNase digestion, e.g.,
Gly/Glu tRNA fragments that can form stable homo- and hetero-
dimers (Tosar et al., 2018b). Other exRNAs are protected inside
vesicles or by association with RNA-binding proteins (RBPs).
Recent work shows that some cell-surface exRNAs are protected
by glycosylation (Flynn et al., 2021). Vesicular exRNAs are the best
studied class of exRNAs. RBP-associated exRNAs have been
difficult to study because of the delicate protein biochemistry
required to isolate and characterize RNA binding sites for each
of the hundreds of RBPs in the human genome (Gerstberger et al.,
2014). Eric Van Nostrand outlined resources from the Encyclopedia
of RNA Elements (ENCORE) to aid in this effort, including
validated antibodies and shRNA reagents (Sundararaman et al.,
2016). ENCORE experiments systematically characterized aspects of
RBP regulation including RBP in vitromotifs and RNA interactions
in K562 and HepG2 cell lines for over 350 RNA binding proteins
(Van Nostrand et al., 2020).

Emily LaPlante described initial work scanning the exRNA
Atlas for ENCORE RNA binding sites and establishing the
infrastructure to allow Atlas users to study their own regions
of interest. Bogdan Mateescu outlined current knowledge about
exRNA-associated RBPs (exRBPs) (Fabbiano et al., 2020) as well
as experimental challenges to discovering new ones. Then he laid
out the ERCC2 PRISM (Purification of exRNA by Immuno-
capture and Sorting usingMicrofluidics) project designed to meet
those challenges. The exRBP-HIT bioinformatic pipeline
identifies candidate exRBPs by overlapping peak calls from
exRNA-seq and RBP eCLIP (enhanced CrossLinking and
ImmunoPrecipitation) experiments. Permutation analysis of
the data yields a ranked list of the most likely candidates.
Initial analysis of data from plasma, saliva, and urine samples
from the Van Keuren Jensen lab reassuringly identifies exRBPs
known to be associated with particular classes of exRNA, for
example RNA silencing factors with miRNA and Ro60 with
YRNA. More interesting were new candidate exRBPs targeting
extracellular mRNA fragments.

The next step in the PRISM group’s strategy is experimental
validation of candidate exRBPs in a model system. After using
CRISPR to create knockout strains in the 293T cell line for each
candidate exRBP gene, exRNA profiles from wild-type and
knockout conditioned media are compared. A case study
including knockout lines for 10 genes in the RNA silencing
pathway led to changes in expression in classes of exRNA
beyond miRNA: tRNA, snRNA, snoRNA, and YRNA.
Whereas the bioinformatic pipeline identifies individual sites
of exRNA interaction with RBPs, the model system provides a
global perspective on the impact of each RBP on expression of all
exRNAs and perhaps gives insight into exRBP function. The
ERCC2 PRISM group plans to identify over 100 candidate
exRBPs and create an atlas of exRNA profiles from the model
system exRBP knockout strains.

DECONVOLUTION

Two major open problems in the field are identifying tissue of
origin of the exRNAs in a biofluid and associating them with their
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molecular carrier, whether that be an RNA binding protein, a
lipid like HDL or LDL, or a variety of classes of extracellular
vesicle. Computational deconvolution, a method for partitioning
a heterogeneous dataset into contributions from different
independent constituents, can complement experimental
approaches to addressing such challenges. There are two broad
classes of deconvolution algorithms—reference-based and
reference-free. Reference-based algorithms require a known
signature matrix of gene expression profiles from all the cell
types or molecular carriers to be separated. Reference-free
methods estimate simultaneously both the signature matrix
and the relative ratios of each cell type or carrier in the mixture.

In a session on deconvolution, BrianWhite described a Tumor
Deconvolution DREAM Challenge (White et al., 2019) to assess
existing and inspire novel methods for deconvolving bulk RNA
expression data. DREAM (Dialogue on Reverse Engineering
Assessment and Methods) Challenges use crowd-sourcing to
address fundamental questions in biomedical research.
Challenges are posed by domain experts in concert with
DREAM organizers, who are responsible for curating data,
defining objective evaluation criteria, and engineering a
computational framework for method submission and
execution. Recently, Challenges have leveraged a “model-to-
data” paradigm (Guinney and Saez-Rodriguez 2018) in which
models are executed in the cloud, facilitating reproducible
deployment of methods and ensuring that those methods are
not overfit to data. The DREAM community includes over
30,000 cross-disciplinary participants who have contributed to
more than 60 Challenges resulting in over 100 publications
(http://DREAMchallenges.org/).

In the Tumor Deconvolution DREAM Challenge, the
organizers provided teams RNA expression profiles from
in vitro and in silico admixtures spanning 14 different
immune, stromal, and cancer cell types and asked teams to
predict the relative ratios of each cell type in the admixtures.
To help assess its potential relevance for deconvolving exRNA
data, Dr. White described CIBERSORTx, one of the baseline
reference methods used in the Challenge. CIBERSORTx is based
on the earlier Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts (CIBERSORT) algorithm
(Newman et al., 2015). Both CIBERSORT and CIBERSORTx
are reference-based. Given an input matrix of reference gene
expression signatures from all cell types expected to be present in
a mixture, CIBERSORT uses support-vector regression (SVR) to
estimate from bulk RNA sequencing data the ratios of each cell
type in themixture. CIBERSORTx (Newman et al., 2019) is a two-
stage deconvolution algorithm, including a batch correction step
to reduce technical variation across the single-cell RNA-seq
datasets used to develop the signature matrix. Results,
including those from CIBERSORTx, are summarized on the
DREAM Challenge website (https://www.synapse.org/
tumorDeconvolutionChallenge).

Rongshan Yu described the DAISM-DNN algorithm (Data
Augmentation through In Silico Mixing and Deep Neural
Network) used to win the Tumor Deconvolution DREAM
Challenge. Dr. Yu explained that the choice of a neural
network method was guided by the non-linearity of the

input data. He showed that expression levels of different
genes vary across cell types in a non-linear way. Neural
networks perform better than linear regression in that case.
The problem with using DNN is that it requires a very large
number of training datasets, on the order of ten thousand. The
team’s solution was to augment the existing training datasets by
shuffling them together in silico with expression data from
target cells, either bulk RNAseq from purified cell samples or
single-cell RNAseq. Finally, although DNN models are
generally considered to be difficult to interpret black boxes,
it is possible to apply methods such as the SHapley Additive
explanation (SHAP) model from game theory (Lundberg and
Lee 2017) to output a ranked list of the genes that contribute
most to the deconvolution results from DAISM-DNN (Lin
et al., 2021).

Finally, Aleks Milosavljevic described the XDec algorithm for
analyzing small RNA-seq datasets in the exRNA Atlas. XDec is a
two-stage reference-free deconvolution algorithm that separates
exRNAs in a biofluid sample into sets associated with different
molecular carriers—extracellular vesicles, lipoproteins HDL and
LDL, and three categories of RNA binding proteins (Murillo et al.,
2019).

FORMULATINGANexRNADATAANALYSIS
CHALLENGE

A major goal of the workshop was to lay the foundation for
creating an exRNA-themed data analysis challenge. The DREAM
challenge framework is ideal for presenting problems in data
analysis to the wider scientific community. The last session of the
workshop was chaired by Gustavo Stolovitzky, co-founder of the
DREAM challenges. He gave a talk asking the question: “Can we
use a crowdsourcing challenge to benchmark exRNA
transcriptomics analyses?” Building on that foundation, Roger
Alexander discussed specific classes of challenges that the
community might put forth. The ensuing discussion and a
post-workshop survey narrowed the field to two classes of
challenge: first, a biomarker discovery challenge, and second, a
deconvolution challenge to address two problems: identifying cell
type of origin andmolecular carrier of groups of exRNAs within a
biofluid.

Biomarker Discovery Challenge
Given a set of case-control experiments for a specific disease,
what are the most informative sets of exRNA biomarkers for
diagnosing and tracking treatment progress for that disease?
One of the most difficult aspects of the challenge is acquiring
the number of case-control experiments necessary to have
sufficient statistical power for biomarker discovery.
Improved batch correction algorithms would ease the
problem by making it easier to stitch together datasets from
multiple related studies. Given large testing and training
datasets, teams would compete to develop algorithms that
identify exRNA biomarkers that best discriminate cases of
disease from controls. The main challenge would reward
algorithms that can solve the batch-to-batch variation
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problem to combine public datasets into a larger testing dataset.
A sub-challenge would select for algorithms that perform well
even as the original training dataset is repeatedly sub-sampled
to be smaller and less powerful. The authors welcome
community participation in this effort.

Deconvolution Challenge
Is it possible to determine the cell type of origin or molecular
carrier of different clusters of exRNAs in a biofluid? These
questions can begin to be addressed in a data analysis challenge
using synthetic datasets. Beyond improved algorithms, a beneficial
outcome of such a challenge would be the creation of better gold
standards of cell-, tissue-, and molecular carrier-associated exRNA
profiles for use with reference-based deconvolution methods.

Moving beyond a synthetic deconvolution challenge requires
the generation of an experimental gold standard, which is more
challenging for exRNA than for tumor deconvolution. For tumor
deconvolution, 14 cell lines were chosen to mimic a tumor
microenvironment. For exRNA, the community must come
together to agree on a similar proxy environment, perhaps by
collecting culture media from cell lines representing several
different tissues, with or without a vesicle purification step
before RNA isolation and sequencing. Finding that proxy
environment was beyond the scope of the workshop but will
be necessary to make possible a non-synthetic exRNA
deconvolution challenge.

DISCUSSION

The workshop introduced experimental and data scientists to the
field of exRNA data analysis. The standard for small RNA-seq data
is uniform processing by the exceRpt pipeline and storage in the
exRNA Atlas. Long extracellular RNA is less thoroughly studied,
and methods for its analysis are still under development. It is
important to be mindful that standard RNA-seq methods are blind
to many RNA base modifications, and mis-annotated RNAs can
lead to misinterpretation. Biomarker and other studies requiring
comparison across datasets would benefit greatly from improved
algorithms to compensate for batch-to-batch variation and other
systematic errors.

CONCLUSION

With the discovery of new classes of exRNA (Flynn et al., 2021)
and development of new types of exRNA-based disease therapies

(Segel et al., 2021), now is an exciting time in the field of
extracellular RNA research. To better our understanding of
exRNA biology and improve our ability to use exRNA in the
clinic, we wish to issue a call to action to the scientific community.
We are seeking a validation dataset that will enable us to launch
an exRNA biomarker discovery challenge. Specifically, we seek
small exRNA sequencing data for several hundred cases and
controls that can be shared prior to publication. The DREAM
challenge “model to data” paradigm will ensure that the data
remains private in a secure computing environment and is not
shared with challenge participants (Ellrott et al., 2019).
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