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SUMMARY

RNA metabolism is controlled by an expanding,
yet incomplete, catalog of RNA-binding proteins
(RBPs), many of which lack characterized RNA bind-
ing domains. Approaches to expand the RBP reper-
toire to discover non-canonical RBPs are currently
needed. Here, HaloTag fusion pull down of 12 nu-
clear and cytoplasmic RBPs followed by quantitative
mass spectrometry (MS) demonstrates that proteins
interacting with multiple RBPs in an RNA-depen-
dent manner are enriched for RBPs. This motivated
SONAR, a computational approach that predicts
RNA binding activity by analyzing large-scale affin-
ity precipitation-MS protein-protein interactomes.
Without relying on sequence or structure informa-
tion, SONAR identifies 1,923 human, 489 fly, and
745 yeast RBPs, including over 100 human candidate
RBPs that contain zinc finger domains. Enhanced
CLIP confirms RNA binding activity and identifies
transcriptome-wide RNA binding sites for SONAR-
predicted RBPs, revealing unexpected RNA binding
activity for disease-relevant proteins and DNA bind-
ing proteins.

INTRODUCTION

RNA-binding proteins (RBPs) act in both the nucleus and cyto-

plasm during every step of the RNA life cycle to exert precise

and responsive control of gene expression. Given the number

and expression levels of eukaryotic RBPs, and the fact that

many are required for viability, it is unsurprising that evidence

demonstrating their importance in development and disease

emerges daily (Castello et al., 2013; Lukong et al., 2008).
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The catalog of RBPs is diverse and has grown to includemeta-

bolic enzymes, cell-cycle regulators, and many other factors not

previously associated with RNA biology (Beckmann et al., 2015;

Conrad et al., 2016). As this diverse RBP catalog grows, complex

regulatory networks are emerging that rely on highly coordinated

and concurrent target association by numerous RBPs. With the

advent of high-throughput techniques to accurately and robustly

identify RBP target binding sites (Van Nostrand et al., 2016) and

protein interaction partners, it has become possible to elucidate

the complete list and the precise molecular functions of RBPs in

these emerging RBP-RNA networks in a scalable manner.

Initial efforts to define the complete repertoire of RBPs largely

focused on proteins with known or predicted RNA binding

domains (RBDs). Attempts to predict RBPs from primary

sequence and protein structure have yielded only moderate suc-

cess (Si et al., 2015), particularly since more than a third of RBPs

have no prior RNA binding related homology or annotation (Cas-

tello et al., 2013). To expand the catalog of RBPs beyond ones

with sequence or structure homology, several experimental ap-

proaches have been undertaken. In budding yeast Saccharo-

myces cerevisiae, protein microarrays and affinity purification

followed by mass spectrometry identified a significant number

of previously unannotated RBPs, including unconventional

RNA interactions for a number of known enzymes (Klass et al.,

2013; Scherrer et al., 2010; Tsvetanova et al., 2010). More

recently, UV cross-linking of proteins to RNA followed by oli-

go(dT) capture and mass spectrometry (referred to as interac-

tome capture) have been used to identify proteins which bind

directly to mRNA. This general approach has identified nearly

900 RBPs in human HeLa cells, 729 RBPs in human HuH-7 cells,

382 nuclear RBPs in human K562 cells, 555 RBPs in mouse em-

bryonic stem cells, 678 RBPs in yeast, and 523 inDrosophila em-

bryos (Beckmann et al., 2015; Castello et al., 2012; Conrad et al.,

2016; Kwon et al., 2013; Matia-González et al., 2015; Sysoev

et al., 2016; Wessels et al., 2016). However, a major limitation

of these studies is that the use of oligo(dT) beads to isolate pro-

teins bound to polyadenylated mature mRNAs is biased against
c.
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the identification of proteins that interact with premature, un-

spliced, and unpolyadenylated RNA.

As many RBPs interact co-transcriptionally to influence

splicing, 50 and 30 end formation, and nuclear localization, for

both unpolyadenylated pre-mRNAs and non-coding RNAs, it is

important to adopt approaches to extend the RBP catalog to

include RBPs not identified by polyadenylated mRNA interac-

tome-capture techniques. One attractive approach is to examine

protein-protein interaction (PPI) networks for both nuclear and

cytoplasmic RBPs and to discriminate between RNA-mediated

and direct protein-protein interactions. At a small scale, quanti-

tative mass spectrometry-based proteomics, in combination

with RNase treatments, has been successfully utilized to identify

RBPs that are concurrently bound to the same RNA substrates

(Flury et al., 2014; Klass et al., 2013).

Here, we propose an RNase-coupled proteomics strategy to

identify proteins with RNA binding activity by prioritizing proteins

that interact with multiple known (or annotated) RBPs in an RNA-

dependent manner. To evaluate this concept, we first focused on

RBPs localized inboth thenucleusand thecytoplasm, suchas the

heterogeneous nuclear ribonucleoparticle proteins (HNRNPs), for

whichRNAbinding rolesarewell documentedand transcriptome-

wide targets have been characterized (Huelga et al., 2012; Lee

et al., 2015; Van Nostrand et al., 2016). We used HaloTag fusion

(HT-RBP) pull-downs followed by quantitative mass spectrom-

etry, in both untreated and RNase treated conditions, to charac-

terize the interactomes of ten of the major HNRNPs, as well as

the splicing factor (RBFOX2), and the nonsense-mediated decay

(NMD) pathway regulator (UPF1). With this approach, we demon-

strate that interactors associating with multiple HT-RBPs are

highly enriched for annotated RBPs as well as candidate RBPs.

To generalize RBP discovery from PPI networks, we devel-

oped a classification algorithm Support Vector Machine ob-

tained from neighborhood associated RBPs (termed SONAR,

available at https://github.com/YeoLab/SONAR) to predict if a

given protein of interest is a candidate RBP. Enhanced CLIP

(Van Nostrand et al., 2016) performed on a subset of SONAR

predictions and HT-RBP interactors corroborated that they

are bona-fide RBPs, demonstrating that SONAR successfully

discovers uncharacterized candidate RBPs by leveraging pro-

tein-protein interactomes.

RESULTS

HaloTag Fusion Pull Down of 12 RBPs Followed by
Quantitative Proteomics Identifies RNA-Dependent
Interactors
We performed a small-scale proteomic study with and without

RNase treatment to identify proteins that interact with known

RBPs in an RNA-dependent manner. Specifically, we performed

an unbiased quantitative proteomic study to systematically and

comprehensively identify proteins in complex with 12 canonical

RBPs (ten hnRNP proteins, the splicing factor RBFOX2, and

nonsense-mediated decay factor UPF1) using HT technology.

The rapidbinding kinetics of theHaloLinkSepharose-based resin

decreases false positives by minimizing resin exposure time to

lysate, and covalent capturing allows for transient interactors to

be purified by prohibiting diffusion of the primary capture target
from the resin (Daniels et al., 2012; Deplus et al., 2013). Plasmids

encoding a full-length open reading frame (ORF) of each RBP

fused to a HT-RBP were transfected in HEK293T cells in biolog-

ical replicates. Confocalmicroscopy performedoncells express-

ing these HT-RBPs labeled with fluorescent TMRHaloTag ligand

revealed nuclear and cytoplasmic localization (Figure S1). As

these proteins are known to interact with RNA substrates in

both the nucleus and cytoplasm, we expect that our fusion pull-

down approach will identify interacting proteins that associate

with both nascent and mature mRNAs.

Cells were lysed 24 hr post-transfection and half of the lysates

were left untreated, while the remaining half were subjected to

stringent RNase digestion (Figure 1A). Briefly, protein complexes

were covalently captured on HaloLink resin, subjected to

washing to remove non-specific interactions, and the remaining

protein interactors were eluted in urea and analyzed by silver

staining (Figure S2A). Following multidimensional protein identi-

fication technology (MudPIT) mass spectrometry of eluted inter-

actors, normalized spectral abundance factors (NSAF) values

were calculated (Figure 1B), and these values were used to

group replicates by hierarchical clustering (Figure S2B). Outlier

experiments were removed and the remaining replicate experi-

ments were averaged together. Within each experiment, the dis-

tribution of log2 enrichment scores compared to the control

experiment was computed for each protein interactor (HNRNPF

is presented as an example in Figure 1B and the others in Fig-

ure S2C). The set of significantly enriched protein interactors

within each experiment was defined using a Z score. Specif-

ically, protein interactors were significantly enriched for interact-

ing with a given HT-RBP if they had a score greater than 1.5 SDs

(s) from the mean (m) of the positive values in the distribution (red

dashed line, Figure 1B). Interactor enrichment scores were

computed for both the RNase-treated and untreated conditions

and a total of 3,853 significantly enriched interactors were de-

tected (Table S1). For each HT-RBP, the enrichment scores for

protein interactors in the untreated sample were compared

to the RNase-treated sample (Figure S2D). Expectedly, the

HT-RBP was often the most enriched protein precipitated in

the experiments (red dots, Figure S2D). Analysis of all enriched

interactions for all HT-RBP baits revealed that our approach

detects approximately similar numbers of RNA-independent

and RNA-dependent interacting proteins. Indeed, nearly half of

all significant protein interactions with HT-RBPs are lost with

RNase treatment (Figure 1C).

We found that RNase treatment depleted known RNA-depen-

dent interactors, such as the exon-junction complex proteins

(Figures 1D and 1E), which displayed enriched interactions

in the untreated sample and indicates RNase-sensitive (RNA-de-

pendent) interactions with HT-HNRNPs. In contrast, we observe

known RNA-independent interactions between HT-UPF1 and

the other UPF components of the EJC complex, which confirms

that our experimental conditions and computational approach

reliably distinguishes known RNA-independent versus RNA-

dependent protein-protein interactions. Similarly, many of the

interactions between HT-RBP baits and the components of the

SF3B splicing complex were RNA-dependent (Figure 1D).

We performed a Gene Ontology analysis on the RNA indepen-

dent interactors for each HT-RBP (Table S2). Terms associated
Molecular Cell 64, 282–293, October 20, 2016 283
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Figure 1. Identification of Enriched RNA-Binding Protein-Protein Interactors for HT-RBPs

(A) HaloTag fusion pull-down and MS experimental procedure. RBP-HaloTag fusion protein constructs are transfected into HEK293T cells in replicate, the cells

are lysed, and half the lysate is treated with RNase. The affinity purified products are subjected to LC/MS/MS to identify protein interactors.

(B) Analysis flow chart for post processing of MS data. NSAF enrichment score distribution compared to control (HaloTag alone) for hnRNPF pull-down. The grey

data points (enrichment < 0) represent the background. For enrichment score higher in hnRNPF experiment (blue), a mean (m, black dashed line) and SD (s) is

computed. Significant interactions have an enrichment score greater than 1.5 times the SD (1.5s, red dashed line).

(C) Number of enriched RNA-dependent and RNA-independent interactions for all HT-RBP baits.

(D) Heatmap of specific interactions displaying log2 fold enrichment over control for all HT-RBP baits. The interactions are grouped into NMD/EJC complexes and

SF3B complexes.

(E) Exon-junction (EJC) and NMD factors. The green indicates RNA-independent interactors, and the light blue indicates RNA-dependent interactors for HT-UPF1

(dark blue).

(F) Gene ontology characterization of RNA-independent HT-RBP interactors. The shared and unique gene ontology terms displayed as interaction network,

where the red text nodes are HT-RBP baits, and the central highlighted nodes are enriched terms shared by all baits (see also Table S2).

284 Molecular Cell 64, 282–293, October 20, 2016
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Figure 2. Super Interactors Are Enriched for

Known and Candidate RBPs

(A) Bar chart displays the fraction of all RNA-

dependent interacting proteins that come up in 1

(unique interactor) and 2 to 12 HaloTag-RBP ex-

periments (shared interactor). The number of in-

teractors is given at the top of each bar.

(B) Bar chart displays the fraction of all RNA-in-

dependent interacting proteins that come up in 1

(unique interactor) and 2 to 12 HaloTag-RBP ex-

periments (shared interactor). The number of in-

teractors is given at the top of each bar.

(C) Bar chart displays the fraction of unique (1 HT-

RBP) and shared (2–12 HT-RBPs) RNA-depen-

dent interacting proteins that are RBPs. The

number of RBP interactors is given at the top of

each bar.

(D) Bar chart displays the fraction of unique

(1 HT-RBP) and shared (2–12 HT-RBPs) RNA-

independent interacting proteins that are RBPs.

The number of RBP interactors is given at the top

of each bar.

(E) Density of the calculated isoelectric points

(pI) of RNA-dependent super interacting proteins

(blue line) and RNA-independent super interacting

proteins (green line) compared to all proteins in the

HT-RBP interaction set (gray dashed line).
with RNA processing are among the most statistically signifi-

cantly enriched Gene Ontology (GO) terms identified for HT-RBP

RNA-independent interactions (Figure 1F). We also observed

significantly enriched ontology terms unique to particular

HNRNPs. For example, HNRNPU uniquely interacts in an RNA-

independent manner with E3 ubiquitin-protein ligases and

proteasome subunits, HNRNPH uniquely interacts with factors

involved in Golgi vesicle transport, and HNRNPF and RBFOX2

interact with unique subsets of nuclear encoded mitochondrial

proteins, including respiratory electron transport chain compo-

nents (Figure 1F). In summary, HaloTag fusion pull downs of

canonical RBPs successfully identified thousands of RNA-

dependent and -independent interactors in human cells.

RNA-Dependent Interactors that Interact with Multiple
RBPs Are Frequently RBPs
We reasoned that themore HT-RBPs a protein interacts with, the

more likely it is an RBP itself, particularly if the interactions are

RNA-dependent. In fact, for both RNA-dependent and RNA-

independent interactors, we observed a strong correlation be-

tween the number of HT-RBP baits that a given protein interacts

with and the likelihood that the protein is itself an annotated RBP.

Nearly half of all RNA-dependent and RNA-independent interac-

tors associate with a single HT-RBP bait and a decreasing num-

ber of proteins interact with an increasing numbers of baits (Fig-
Molecul
ures 2A and 2B). However, as the number

of interacting HT-RBPs increases, the

fraction of annotated RBPs represented

in the set of interactors also increases,

such that �60% of interactors that

interact with five or more HT-RBPs are
annotated RBPs (Figures 2C and 2D). This effect is even stronger

for RNA-dependent interactions. 100%of RNA-dependent inter-

actors associating withmore than ten HT-RBPs are known RBPs

(Figure 2C), compared to�70%of RNA-independent interactors

(Figure 2D). Based on these analyses, we define proteins that

interact with five or more HT-RBPs ‘‘super interactors’’ (SI).

The �12- to 20-fold enrichment of annotated RBPs within the

SI proteins is notable, as known RBPs currently comprise

�5%–8% of all annotated protein-coding genes. Higher isoelec-

tric points are characteristic of annotated RBPs (Castello et al.,

2012), and when we compared the distribution of isoelectric

points for RNA-dependent and RNA-independent SI proteins,

we see higher isoelectric points for RNA-dependent SI proteins

(Figure 2E), further supporting an enrichment in RNA binding ac-

tivity in this group of proteins. Our findings support our hypothe-

sis that RNA-dependent interactors of multiple RBPs are en-

riched for known or candidate RBPs.

Protein-Protein Interaction Networks Allow Global
Prediction of RBPs
Based on our observations that the more HT-RBPs a given

protein interacts with, the more likely it is an RBP, we devel-

oped a classification algorithm SONAR to calculate an RBP

classification score (RCS) for protein baits of interest from

large-scale PPI data sets. First, we developed a list of 1,787
ar Cell 64, 282–293, October 20, 2016 285
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Figure 3. SONAR RBP Classification

Approach

(A) Diagram of neighborhood classification strat-

egy. Protein of interest (POI) from a given inter-

actome data set with its depicted neighborhood

with interactions at different levels is shown. The

first level interactions are direct interactions

with POI, the second level interactions are in-

teractions with first level neighbors, and third level

interactions are interactions with second level

neighbors.

(B) Determination of RCS as described in the

Experimental Procedures section.

(C) ROC-AUC analysis of classifier performance

for human proteins from BioPlex network. The

data are represented as mean ± SEM.

(D) PRC-AUC analysis of classifier performance

for human proteins from BioPlex network.

(E) Percent recall for SONAR trained on BioPlex

PPI network for six RBP lists depicting different

RBP annotations and percent of annotated

transcription factors (TF) predicted as candi-

date RBPs.

(F) Violin plots of RCS distributions for all human

BioPlex interactors, non-RBP interactors within

BioPlex, annotated RBP interactors within BioPlex,

all HT interactors, HT-RI-SI, and HT-RD-SI within

Bioplex. The median of the distributions are de-

noted with a square box (see also Table S4).
human annotated RBPs by combining the list of 1,072 by Sun-

dararaman et al. (2016) and 1,542 by Gerstberger et al. (2014)

(Table S3). Next, we generated ‘‘neighborhoods’’ for all proteins

in the human BioPlex PPI data set, which consists of dozens of

thousands of interactions (Huttlin et al., 2015). Proteins (RBP

and non-RBPs) are represented as nodes in these neighbor-

hoods with edges connecting two proteins if they interact

(Figure 3A). Interestingly, known RBPs in the BioPlex data set

exhibit statistically significant differences from non-RBPs in

terms of network properties. RBPs tend to have higher degree

centrality (the number of edges incident upon a node;

p < 10�15) and higher closeness centrality (distance from the

node to all others, p < 10�11). RBPs and non-RBPs have

approximately similar betweenness centrality (i.e., the number

of times the node acts as a bridge along the shortest path be-

tween two other nodes, p < 0.002) compared to non-RBPs

(Figure S3A). Within each neighborhood, the fractions of anno-

tated RBPs were extracted as features for the SVM classifier

(Figure 3B). The classifier was trained using annotated RBPs

as positively labeled examples and other (presumably non-

RBP) proteins as negatively labeled examples. Performance

was evaluated using 10-fold cross-validation. The areas under
286 Molecular Cell 64, 282–293, October 20, 2016
the receiver operating curve (ROC-AUC)

and under the precision recall curve

(PRC-AUC) illustrate the high sensitivity

(�0.7) and specificity (�0.9) of the clas-

sifier (Figures 3C and 3D). We obtained

different definitions of RBPs based on

interactome capture (Castello et al.,

2012), Baltz (Baltz et al., 2012), Beck-
mann (Beckmann et al., 2015), manual curation (Gene Ontology

or GO-annotated), sequence composition alone (RBD-defined),

and some combination of experimentally defined and manual

curation (Gerstberger et al., 2014) (Figures 3E and S3B). Impor-

tantly, the performance of SONAR, as measured by the per-

centage recall, is robust to different definitions of RBPs (Figures

3E and S3B). Curiously, the RBD-defined set consisting of the

largest set (2,551) of proteins predicted to associate with RNA

based solely on sequence composition appears to have a low

fraction of SONAR-predicted RBPs, unlike the other defined

lists. This strongly suggests that sequence composition alone

may yield a high false positive rate when annotating RBPs.

We also observed that 30% of known transcription factors

are predicted by SONAR to have RNA-association activity

(Figure 3E).

The RCS value for each held-out protein in the BioPlex data

was determined as the mean classifier score (or output) over

ten iterations of 10-fold cross-validation (Table S4). The RCS

distribution for annotated RBPs (that were not used in training

of SONAR) was statistically significantly higher (p < 10�16, Kolgo-

morov-Smirnov two-tailed test) compared to non-annotated

RBPs, as well as the full set of proteins in the BioPlex data. In
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Figure 4. SONAR RBP Classification

Scores Predict Thousands of RBPs Using

PPI Networks from Multiple Species

(A) ROC-AUC analysis of classifier performance

for yeast (Saccharomyces cerevisiae) proteins

from BioGRID network. The data are represented

as mean ± SEM.

(B) ROC-AUC analysis of classifier performance

for fly (Drosophila melanogaster) proteins from

BioGRID network. The data are represented as

mean ± SEM.

(C) Violin plots of RCS distributions for all yeast

BioGRID interactors, non-RBP interactors, and

annotated RBP interactors within yeast BioGRID

interactors.

(D) Violin plots of RCS distributions for all fly

BioGRID interactors, non-RBP interactors, and

annotated RBP interactors within BioGRID inter-

actors.

(E) Venn diagram showing overlap between all

annotated yeast RBPs and SONAR predicted

yeast RBPs (RCS > 1.066, threshold for false

positive rate 0.1).

(F) Venn diagram showing overlap between all

annotated fly RBPs and SONAR predicted fly

RBPs (at RCS > 1.072, threshold for false positive

rate 0.1).

(G) Venn diagram showing overlap between

conserved high RCS scoring predicted RBPs

in human (light red), in yeast (green), and in fly

(purple).
fact, �70% of annotated RBPs had an RCS of greater than our

user-defined SONAR threshold of 0.79, whereas only 10% of

all unannotated RBPs scored above threshold (Figure 3F). Inter-

estingly, 30% of the complete set of HaloTag interactors (HTI)

that were also present in the BioPlex data set scored above

0.79 (Figure 3F). The complete set of HaloTag-RBP-super inter-

actor proteins had a score distribution similar to that for anno-

tated RBPs. Pertinently, SI proteins that were extracted from

the RNA-dependent (HT-RD-SI) interactions had significantly

higher RCS values than SI proteins obtained from the RNA-inde-

pendent (HT-RI-SI) interactors (Figure 3F).

Next, we evaluated attributes that reflect biophysical proper-

ties thought to be associated with known RBPs (Castello et al.,

2012; Lunde et al., 2007). We compared annotated RBPs and

candidate proteins previously unannotated as RBPs, but pre-

dicted by SONAR to be RNA-associated (RCS > 0.79) (blue lines,

Figure S4). In comparison to all proteins in the BioPlex network

(dashed lines, Figure S4A), we found that SONAR-predicted
Molecul
candidate RBPs exhibited higher iso-

electric points (p < 10�6, Figure S4A),

higher proportions of residues in disor-

dered regions (p < 10�5, Figure S4B),

and higher amino acid compositions

reflective of RNA binding (p < 10�5, Fig-

ure S4C). These features were also

similar to annotated RBPs (red lines,

Figure S4). We did not detect any appre-

ciable differences in low-complexity
regions (Figure S4D) or total protein size (Figure S4E). In sum-

mary, SONAR leverages publically available PPI networks to pre-

dict proteins that have attributes of RBPs.

SONAR Identifies Hundreds of Previously Unannotated
RBPs across Multiple Species
The flexibility of SONAR was next evaluated on available yeast

(Saccharomyces cerevisiae) and fly (Drosophila melanogaster)

protein-protein interactome data sets. Training and testing for

the classifiers followed the same procedure as for the human

data set. Interestingly, we found that SONAR performed very

well (AUC > 0.8) on yeast (Figure 4A) and fly (Figure 4B) PPI

data sets generated by affinity precipitation followed by mass

spectrometry (AP-MS), similar to BioPlex. Performance metrics

are provided for human, yeast, and fly in Figure S3C (chosen

to achieve a false discovery rate of 10%). However, SONAR per-

forms weakly using PPI data sets from yeast two-hybrid (Y2H)

methodology (Figure S3D). As Y2H relies on bait and prey
ar Cell 64, 282–293, October 20, 2016 287
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Figure 5. SONAR Predicts Human Candidate RBPs Enriched for Proteins with Zinc Finger and DNA Binding Domains

(A) Venn diagram showing overlap between all HT-RBP RNA-dependent SI proteins contained in the BioPlex network (light blue), all annotated RBPs contained in

the BioPlex network (red), and all BioPlex SONAR predicted RBPs (at RCS > 0.79; gray).

(B) Bar graph displaying -log10 p values for GO Biological Process (BP) terms enriched in the set of RBP candidates (RCS > 0.79 and not previously annotated as

RBPs) compared to all interactors within the BioPlex data set.

(C) Bar graph displaying -log10 p values for InterPro protein domains enriched in the set of RBP candidates (RCS > 0.79 and not previously annotated as RBPs)

compared to all interactors within the BioPlex data set.
proteins to interact, bringing together the activation domain and

binding domain of a transcription factor to activate a reporter

gene, we expect that when these bait and preys are RBPs,

they are not directly bound to RNA molecules. This result sup-

ports the concept that AP-MS experiments identifies endoge-

nous RBP interactors, as they aremore likely to be in their normal

cellular context of binding RNA. As with RCS distributions

derived from the human BioPlex network, the yeast (Figure 4C)

and fly (Figure 4D) RCS distributions for annotated RBPs was

statistically significantly higher (p < 10�16 by Kolgomorov-Smir-

nov two-tailed test) compared to non-annotated RBPs, as well

as the full set of proteins in the BioGRID data.

SONAR candidate RBPs overlap with 31% of annotated yeast

(Figure 4E) and 17% of annotated fly RBPs (Figure 4F). Here, we

defined annotated yeast and fly RBPs using the union of human

orthologs and proteins identified from interactome-capture

studies (Figures S5A and S5B for yeast and S5C for fly). Perfor-

mance for SONAR was also robust when trained using RBP def-

initions solely derived from interactome-capture or only from

computationally defined orthologs (Figure S5E). Importantly,

350 human, 290 fly, and 279 yeast proteins that were predicted

by SONAR as candidate RBPs had assignable orthologs, with

142 SONAR predicted candidate RBPs conserved across all

three species (Figure 4G). These conserved candidate RBPs

are involved in protein folding, chromosome organization, and

nuclear import and include HT-RBP SI proteins (Table S4). In

all, these results demonstrate that SONAR identifies previously

unannotated and conserved RBPs across multiple species

without explicit sequence and structure homology information.
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Candidate RBPs Are Enriched for Proteins with Zinc
Finger and DNA Binding Domains
The set of BioPlex proteins that SONAR predicts as RBPs

(RCS > 0.79) overlaps with �70% of the list of annotated RBPs

contained in BioPlex and �80% of HT-RD SI proteins from the

HaloTag PPI network (Figure 5A). There are 998 SONAR candi-

date RBPs that have no previous annotation as RBPs, ten of

which are HT-RD-SI RBP candidates (Figure 5A). We performed

GO analysis to determine what categories of proteins are en-

riched in SONAR predicted RBPs aside from the expected

RNA processing categories. Intriguingly, for previously unanno-

tated SONAR predicted RBPs, we found significant enrichment

for GO terms involved in transcription, chromatin modification,

chromosome organization, DNA binding, and nucleosome as-

sembly (Figure 5B; Table S5), and protein domains contained

by BioPlex candidate RBPs are significantly enriched for DNA

binding domains, with zinc finger binding domains being the

most enriched (Figure 5C; Table S5). We also found that SONAR

predicted RBPs overlapped with 27% of the newly identified

non-canonical RBPs termed ‘‘enigmRBPs’’ (Beckmann et al.,

2015), as well as�68% of recently reported DNA-RBPs (Conrad

et al., 2016) (Figure S5D). In fact, the concordance with the latter

study is also consistent with our recent data generated as part

of the ENCODE consortium. We identified ten previously anno-

tated DNA binding proteins that SONAR predicted as RBPs

(RCS > 0.79), which interact directly with endogenous RNA by

eCLIP (Table S5; publicly available data sets at https://www.

encodeproject.org). We believe that the large set of SONAR pre-

dicted RBP candidates (998) would significantly expand the

https://www.encodeproject.org
https://www.encodeproject.org


existing repertoire of RNA-associated proteins upon further

experimental confirmation.

CLIP and eCLIP Validate RNA Binding Activity and
Discover RNA Targets of Candidate RBPs
We next sought to determine SONAR’s ability to predict RNA

binding activity in vivo for a selection of HT-RD-SI proteins

with SONAR RCS values between�1.3 and +1.7. We transiently

transfected HEK293T cells with plasmids expressing V5-tagged

fusions of a selection of candidate RBPs. Cells were UV irradi-

ated and RBP-RNA complexes were immunoprecipitated using

commercially available V5 antibody and T4 PNK radiolabeled,

separated on an SDS-PAGE gel, and transferred to a nitrocellu-

lose membrane for western blot and phosphor-image analysis.

Negative controls were either non-transfected or expressed

V5-tagged GFP, while positive controls expressed the V5-

tagged RBPs HNRNPM and HNRNPUL1. We found that seven

out of eight V5-tagged RBPs tested efficiently bound radiola-

beledRNA in aUV-cross-linking-dependentmanner (Figure S6A;

Supplemental Information). In contrast, we did not detect

radiolabeled RNA immunoprecipitated from cells expressing

V5-tagged GFP in either condition or from non-transfected cells.

This assay validates SONAR predicted (RCS > 0.79) at 100%,

but we note here that 3 HT-RD-SI proteins (AIFM1, VIM, and

SMU1) with low SONAR scores also detectably bind RNA above

negative controls by this assay, indicating a false negative rate

for SONAR (Figure S6A).

Next, we determined the transcriptome-wide binding sites of a

subset of these RBP candidates and included the zinc-finger

protein of unknown function ZNF184 using enhanced CLIP.

Briefly, HEK293T were subjected to UV-mediated cross-linking,

lysis, and treatment with limiting amount of RNase, followed by

immunoprecipitation (IP) of protein-RNA complexes using

commercially available antibodies that interrogate the endoge-

nous proteins. RNA fragments protected from RNase digestion

by RBP occupancy were subjected to 30 RNA linker ligation,

reverse-transcription, and 30 DNA linker ligation to generate

eCLIP libraries for high-throughput Illumina sequencing. The

improved efficiency of eCLIP enabled the generation of a size-

matched input (SMInput) library for each biological sample, in

which 2%of the pre-immunoprecipitation sample was subjected

to identical library generation steps including ribonuclear protein

complex size selection on nitrocellulose membranes. In total, 42

eCLIP (including SMInput) libraries were sequenced to �seven

million reads each, of which �30%–70% mapped uniquely to

the human genome (Table S6).

We demonstrate that these candidate RBPs bind RNAs in

different genic regions (Figure 6A) and recognize different bind-

ing motifs (Figure 6B). The RAN-GTPase activating protein

RANGAP1 showed preferential enrichment in 50 UTRs and

intron-less genes (Figures 6A and 6C). RANGAP1 localizes at

the nuclear periphery and is important for import of cargo

through nuclear pore complexes. Disrupted nuclear import

caused by RANGAP1 inhibition through interaction with

C9orf72 hexanucleotide repeat expansion RNA (HREs) is

involved in ALS pathology (Zhang et al., 2015). Interestingly,

we find that the motif (CGGCGG) enriched by RANGAP1 eCLIP

is similar to the G4C2 pattern responsible for HRE G-quadra-
plexes (Figure 6B). The mitotic spindle organizing protein

NUMA1 preferentially bound to intronic regions including its

own pre-mRNA (Figures 6A and 6D). The ring-type zinc finger

protein RNF219, previously implicated in Alzheimer’s disease,

preferentially bound 30 UTRs (Figures 6A and 6E). The zinc finger

containing DNA binding protein ZNF184 had enriched clusters

over all types of transcript regions, including introns such as

the distal intron of the CENPM gene (Figures 6A and 6F). In all,

SONAR-predicted RBPs indeed interact with hundreds to thou-

sands of enriched binding sites in the human transcriptome.

CLIP cluster discovery was performed using the CLIPper

(Lovci et al., 2013) algorithm. SI proteins that had low RCS

values, such as AIFM and VIM, had fewer significantly enriched

clusters (Figure S6C). Predicted RBPs with high RCS values

such as NUMA1, RANGAP1, RNF219, and ZNF184 had far

more enriched clusters and bound transcripts in specific regions

(Figures 6A and S6C). Interestingly, SONAR RCS values appear

positively correlated with the fraction of interactions with HT-

RBPs that are RNA-dependent (R2 = 0.72) (Figure S6B) and

with the number of identified eCLIP clusters (R2 = 0.42) (Fig-

ure S6C). Overall, these findings demonstrate that the SONAR

algorithm is effective at predicting bona-fide RBPs.

DISCUSSION

The increasing importance of RBPs in development and disease

has accelerated the need to comprehensively, rapidly, and accu-

rately identify new components of ribonuclear particles in a vari-

ety of organisms. Previous computational approaches to define

the complete catalog of RBPs rely heavily on the presence of

RNA binding domains (Baltz et al., 2012; Gerstberger et al.,

2014). These approaches lack sensitivity given the growing num-

ber of interactome-capture studies that identify RBPs that lack

characterized RBDs (Beckmann et al., 2015; Conrad et al.,

2016). However, interactome-capture studies of polyA-selected

mRNPsmay not identify proteins interacting with nascent or pre-

mRNA and interactome capture followed by mass spectrometry

is a technically demanding technique, precluding its adoption for

the vast majority of researchers.

In this study, we have developed a simple yet powerful

computational approach to discover RBPs based on the realiza-

tion that without RNAase treatment, pull down of RNA-associ-

ated proteins enriches for interactors that are directly bound to

RNA. Therefore, the higher the number of interacting RBPs, the

more likely a previously unannotated protein is itself an RBP.

As a pilot study, we have independently identified RBP-interac-

tomes for a diverse set of RBPs, namely a splicing factor

(RBFOX2), a decay regulator (UPF1), and ten major HNRNP pro-

teins using a HaloTag purification approach followed by mass

spectrometry analysis. Together, these 12 proteins are localized

in the nucleus and cytoplasm and are ideal for identifying known

and previously unannotated RBPs bound to both nuclear and

cytoplasmic RNA substrates. By comparing RNase-treated

and RNase-untreated conditions, we were able to uncover thou-

sands of RNA-dependent and RNA-independent interactions.

Interactors include many unexpected proteins involved in

diverse biological processes including oxidative phosphoryla-

tion, proteasome function, energy production, mitochondrial
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Figure 6. Enhanced CLIP Validation of Candidate RBPs Predicted by HT-RBP Interactome and SONAR Classification

(A) Distributions across transcript regions for peaks enriched >8-fold over size-matched input (-log10 p > 5) from eCLIP experiments for four RBP candidates.

(B) Motifs called and p values for input normalized peaks described in Figure 5D.

(C) Genome browser track view of RANGAP1 eCLIP data in reads per million (RPM) showing enrichment above input on the intronless JUND gene locus.

(D) Genome browser track view of NUMA1 eCLIP data in reads per million (RPM) showing enrichment above input on a NUMA1 intron.

(E) Genome browser track view of RNF219 eCLIP data in reads per million (RPM) showing enrichment above input on the ACTG1 30 UTR region.

(F) Genome browser track view of ZNF184 eCLIP data in reads per million (RPM) showing enrichment above input on the CENPM distal intron.
organization, and Golgi vesicle transport. Importantly, this

resource confirms that proteins that interact with multiple HT-

RBPs are enriched for RBPs.

As there are many large-scale PPI data sets available that are

not subject to RNase treatment, we developed an algorithm

termed SONAR that leverages the neighborhood of RBP interac-

tors in PPI networks to identify unannotated RBPs. SONAR does

not rely on sequence or structural homology or modeling which

historically prevented the identification of proteins that have

RNA binding activity through yet unknownmechanisms. Instead,

SONAR relies on experimentally determined interaction informa-

tion from thousands of independently generated affinity purifi-

cation experiments, which in aggregate is more stringent than

replicates of a few to a dozen precipitation experiments. Further-

more, aswe demonstrated, SONAR can be readily applied to PPI

data sets frommultiple organisms, which led to our identification

of previously unannotated, evolutionarily conserved RBPs. Inter-

estingly, many of these candidate RBPs have zinc finger binding
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domains and are involved in processes such as transcription,

chromosome organization, and chromatin modification, in sup-

port of recent predictions that there are likely RNA binding roles

for DNA binding proteins (Conrad et al., 2016). While it is possible

that this observation is the result of direct protein-protein interac-

tions between DNA binding protein baits and nuclear RBPs, our

results also suggest the possibility that many DNA binding pro-

teins likely also interact with RNA during transcription or RNA

processing. The second possibility is consistent with our own

eCLIP studies performed as part of the ENCODE consortium,

which show that ten high SONAR-scoring proteins previously

reported to have DNA binding and transcription factor activity

can also interact directly with endogenous RNA targets.

Lastly, we validated SONAR predictions of RNA binding activ-

ity by eCLIP for a set of RBP candidates. Surprisingly, for six

candidate eCLIP validations, higher SONAR scores correlated

with higher numbers of eCLIP-identified binding sites, with VIM

and AIFM libraries having the fewest peaks above size-matched



input controls, and NUMA1, RANGAP1, and ZNF184 having

many more clusters enriched above size-matched input con-

trols. In retrospect, this interesting observation is consistent

with our features utilized by SONAR. It is reasonable to imagine

that the higher the fraction of known RBPs within the neighbor-

hoods of a candidate RBP, the higher the number of different

RNA molecules bound by various RBPs (hence more binding

sites) that the protein should interact with.

Among our validated examples of previously unannotated

RNA-associated proteins, the ring-type zinc finger protein

RNF219 preferentially bound 30 UTRs, which is intriguing in light

of its reported protein-protein interactions with components

of the deadenylation machinery (Hein et al., 2015; Li et al.,

2014), and it will be interesting in the future to determine

whether RNF219 affects stability of its RNA targets. The mitotic

spindle organizing protein NUMA1 preferentially bound introns,

and considering the strong RNA independent interaction of

NUMA1 with UPF1 and RBFOX2 baits, it is possible that

NUMA1 plays a role in alternative splicing or nonsense medi-

ated decay of its targets. The RAN-GTPase activating protein

RANGAP1 preferential bound many 50 UTRs. Disruption of

RANGAP1 mediated mRNA export and localization could be a

possible mechanism underlying C9orf72 HRE related ALS pa-

thology (Zhang et al., 2015), and in future experiments, it is

important to determine if C9orf72 HRE disruption of RANGAP1

RNA binding may lead to mRNA export/import inhibition and

altered stability or translation for RANGAP1 mRNA targets.

The DNA binding protein ZNF184 bound transcripts in introns,

UTRs, and coding sequences. Given the recent finding that

mRNA fate can be determined by promoter regions alone (Zid

and O’Shea, 2014), one interesting explanation of this phenom-

enon may be that RNA binding activity of promoter specific tran-

scription factors and chromatin remodelers influences transcript

localization, and the group of transcription factors predicted to

bind RNA in this study could serve as valuable candidates for

testing this hypothesis.

In conclusion, the SONAR algorithm is a powerfully simple and

effective method for the de novo identification of candidate

RBPs. As with many methods, the strength of SONAR’s

approach, which lies on its ability to leverage large-scale PPI

data sets, is also a potential weakness. First, SONAR relies on

the coverage of these PPI networks, meaning not all proteins

have been subjected to affinity precipitation followed by mass

spectrometry. Second, SONAR relies on the quality of the inde-

pendent data sets within these PPI networks. Finally, SONAR re-

quires definitions of known or annotated RBPs to generate its

scores for uncharacterized proteins. Fortunately, as more inter-

actome-capture data sets are generated and more SONAR-pre-

dicted RBPs are validated, we can build an increasingly rigorous

data set of known RBPs. Also, efforts to improve the quality and

coverage of PPI data sets are underway. Nevertheless, in this

study, the RBP interactomes presented here represent a valu-

able first step in building a comprehensive resource for the iden-

tification of RNA-dependent and RNA-independent interactors

of RBPs. Also, future studies verifying the large set of classifier

predicted RBPs would expand the list of RBPs to include many

unexpected classes of proteins involved in diverse biological

processes.
EXPERIMENTAL PROCEDURES

HaloTag Affinity Purification

HaloTag affinity purification was performed as follows, with andwithout RNase

treatment in replicate (2 ml RNase A; A797C 4 mg/mL for each 12 million cell

pellet lysate). Protein complexes were covalently captured on HaloLink resin

pre-equilibrated in resin wash buffer (Tris-buffered saline [TBS] and 0.05%

IGEPAL CA-640; Sigma) for 15 min at 22�C with rotation. Resin was then

washed five times with wash buffer to remove non-specific interactions and

protein interactors were eluted in 8 M urea. Additional control experiments

with HaloTag only were also performed with and without RNase digestion in

replicate. Affinity purified complexes were than analyzed by MudPIT as previ-

ously described (Florens and Washburn, 2006).

Mass Spectrometry Data Analysis

Spectral counting was performed and NSAF determined (dNSAF values) as

previously described (Zhang et al., 2010). False positives/contaminants were

removed by comparing to control experiments. Any potential protein interactor

with a dNSAF value that was not 23 greater than its value in any of the control

corresponding experiments was assigned a 0 value.

For equivalent comparison to the RBP RNA targets, the lists of protein-pro-

tein interactors were filtered for those targets that are expressed at a detect-

able RNA level in HEK293T cell RNA-seq data (Huelga et al., 2012). Replicates

were clustered, outlier data sets (UPF1_RNASE_2,M_RNASE_1, H_RNASE_1,

D0_1) were removed, and the remaining replicates were averaged together. An

enrichment score was calculated for each protein interactor by calculating a

log2 ratio of the dNSAF value in the RBP purification experiment compared

to the control experiment:

Enrichment Score= log2½ðdNSAF RBP+ 0:000001Þ=
ðdNSAF Control + 0:000001Þ�

A pseudocount of 0.000001 representing the lowest measurable dNSAF

value was added within the enrichment score to prevent losing targets with

zero values in the control experiment (divide by zero errors). The final set of

protein-protein interactors was determined using all protein interactors with

enrichment greater than the m–1.5s in each data set.

RNA-dependent interactions were defined as: ((no_RNase enrichment

score) � (RNase enrichment score)) / (no_RNase enrichment score) > 0.3.

Post lysis interactions were filtered and defined as: ((no_RNase enrich-

ment score) � (RNase enrichment score)) / ((no_RNase enrichment score) +

(RNase enrichment score)) < �0.2. All other interactions were defined as

RNA independent.

PPI Network Construction and Neighborhood Features Generation

All the protein-protein interaction networks were represented as an undirected

and unweighted graph G = (V, E). Each vertex v˛ V refers to a protein and each

edge (v, u) ˛ E displays an interaction between two proteins, v and u. The defi-

nition of level-k is described in Sela et al. (2012): briefly, u is v’s level-k neighbor

when there exists a simple path of length k from v to u. It should be noted that

there may be more than one simple path between v and u, thus u can be v’s

level-k1 and level-k2 (k1 sk2) simultaneously. Additionally, if there are n

(n > 1) paths of k from v to u, the protein uwill be counted k times in the feature

calculation of level-k neighbors.

In this study, we only consider the given protein’s first three levels of neigh-

bors (shown in Figure 3A), and an example of the feature generation process is

displayed in Figure 3B. With the three features (calculations described in Sup-

plemental Information), we obtain a feature vector for each protein of the PPI

network. We constructed a human PPI network using interaction data from

the BioPlex project (Huttlin et al., 2015). For each protein in this network,

a PPI feature was generated with the approach above. PPI networks for

two other model organisms (Saccharomyces cerevisiae and Drosophila

melanogaster) were constructed with the interaction data downloaded from

BioGRID 3.4 database (Stark et al., 2006). For each species, two PPI networks

were assembled with the data from AP-MS and yeast-two-hybrid experi-

ments, respectively. The 3-level PPI features were generated using the same

calculation above for each protein in the PPI networks.
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Classifier Building and Evaluation

Classifiers were trained to recognize RBPs using the SVM classification model

with a radial basis function (RBF) kernel as implemented within the scikit-learn

package in Python (Pedregosa et al., 2011). We divided the proteins in each

PPI network into two categories, RBPs and non-RBPs, based on the RBP

annotation lists as described in the main text. Each protein is represented by

a feature vector and a class label (i.e., RBP or non-RBP). We trained the clas-

sifiers and evaluated their performance using ROC-AUC and PRC-AUC anal-

ysis with 10-fold cross-validation. The closer the classifier’s ROC curve to the

upper left corner, the better the classifier’s performance in both sensitivity and

specificity. To train our classifiers with a balanced data set, we oversampled

RBP samples in the training step. During testing, each unseen protein obtained

a classification score from a trained classifier. We generated classification

scores for every protein in the PPI network during the cross-validation

training/testing process and repeated ten times to get an average score for

each protein.

eCLIP

eCLIP was performed as previously described (Van Nostrand et al., 2016).

Briefly, for each experiment, 20 million HEK293T cells were UV cross-linked

(254 nM, 400 mJ/cm2) and lysed on ice and lysates were sheared with RNase

I (Ambion). RBP-RNA complexes were inmmunoprecipitated with antibodies

(see Supplemental Information) specific to candidates of interest (Protein G

sheep anti-rabbit Dynabeads) and immunoprecipitated material was strin-

gently washed. Dephosphorylation with FastAP (Thermo Fisher) and T4 PNK

(NEB) are followed by on-bead ligation of barcoded RNA adapters to the 30

end (T4RNALigase, NEB). RNA-protein complexes are run on standard protein

gels and transferred to nitrocellulose membranes, and the region 75 kDa

(�150 nt of RNA) above the protein molecular weight is excised and proteinase

K (NEB) treated to isolate RNA. Reverse transcription is carried out using Affi-

nityscript (Agilent), followed by treatment with ExoSAP-IT (Affymetrix) to re-

move excess oligonucleotides. A DNA randomer adaptor is then ligated to

the cDNA fragment 30 end (T4 RNA Ligase, NEB). After cleanup (Dynabeads

MyOne Silane, Thermo Fisher), samples were first subjected to qPCR to deter-

mine final PCR cycle number, and then PCR amplified (Q5, NEB) and size

selected via agarose gel electrophoresis. Sampleswere sequenced on the Illu-

mina HiSeq 2500 platform as two Paired End 50 bp (for N5) or 55 bp (for N10)

reads.

ACCESSION NUMBERS

The accession number for the eCLIP data reported in this paper is GSE86035.

The complete MudPIT data sets can be obtained from ftp://massive.ucsd.

edu/ using the following MassIVE accession numbers for the MOCK and Halo-

tag RBP data sets with password (KBGWY39029): MSV000079668 and

MSV000079669, aswell as at ProteomeXchange: PXD003999 andPXD004000.

SUPPLEMENTAL INFORMATION
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