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SUMMARY

RNA binding proteins (RBPs) orchestrate the pro-
duction, processing, and function of mRNAs. Here,
we present the affinity landscapes of 78 human
RBPs using an unbiased assay that determines the
sequence, structure, and context preferences of
these proteins in vitro by deep sequencing of bound
RNAs. These data enable construction of ‘‘RNA
maps’’ of RBP activity without requiring crosslink-
ing-based assays. We found an unexpectedly low
diversity of RNA motifs, implying frequent conver-
gence of binding specificity toward a relatively small
set of RNA motifs, many with low compositional
complexity. Offsetting this trend, however, we
observed extensive preferences for contextual fea-
tures distinct from short linear RNA motifs, including
spaced ‘‘bipartite’’ motifs, biased flanking nucleotide
composition, and bias away from or toward RNA
structure. Our results emphasize the importance
of contextual features in RNA recognition, which
likely enable targeting of distinct subsets of tran-
scripts by different RBPs that recognize the same
linear motif.

INTRODUCTION

RNA binding proteins (RBPs) control the production, maturation,

localization, translation, and degradation of cellular RNAs. Many

RBPs contain well-defined RNA binding domains (RBDs) that

engage RNA in a sequence- and/or structure-specific manner.

The human genome encodes at least 1,500 RBPs that contain

established RBDs, the most prevalent of which include the
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RNA recognitionmotif (RRM,�240RBPs), theheterogenous ribo-

nucleoprotein (hnRNP) K-homology domain (KH,�60 RBPs), and

the C3H1 zinc-finger (ZF,�50 RBPs) domain (reviewed by Gerst-

berger et al., 2014). While RBPs containing RRM (Query et al.,

1989) or KH domains (Siomi et al., 1993) were first described

over two decades ago, the repertoires of RNA sequences and

cellular targets bound by different members of these and other

classes of RBPs still remain mostly unknown.

Structural studies have identified canonical types of RBP-RNA

interactions but have also uncovered non-canonical binding

modes, making it difficult to infer RNA target preferences from

amino acid sequence alone (reviewed by Cléry and Allain,

2013; Valverde et al., 2008). For example, RRMs typically

interact with RNA via subdomains termed RNPs (reviewed by

Afroz et al., 2015); however, structural studies have also shown

that certain RBPs bind RNA via the linker regions, loops, or the

C- or N-terminal extremities of their RRMs rather than the canon-

ical RNP1 and RNP2 strands (reviewed by Daubner et al., 2013).

These variable RNA binding mechanisms and the presence of

multiple RBDs in most RBPs (reviewed by Lunde et al., 2007)

have motivated efforts to experimentally interrogate the speci-

ficity of individual RBPs.

Several methods exist for determining RBP binding sites

in vivo, most notably RNA immunoprecipitation (RIP, Gilbert

and Svejstrup, 2006) and UV crosslinking followed by immuno-

precipitation (CLIP) and sequencing (Ule et al., 2003). While

such techniques capture RBP-RNA interactions in their cellular

contexts, it is often difficult to derive motifs from these experi-

ments due to interactions with protein cofactors, high levels of

non-specific background (Friedersdorf and Keene, 2014), and

non-random transcriptome composition. Quantitative in vitro as-

says such as electrophoretic mobility shift assay (EMSA), sur-

face plasmon resonance (SPR), and isothermal calorimetry

(ITC) require prior knowledge of putative RNA substrates, mak-

ing them unsuitable for high-throughput motif discovery.

Methods such as SELEX (systematic evolution of ligands by
ublished by Elsevier Inc.
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exponential selection) typically select a few high-affinity

‘‘winner’’ sequences but generally do not reveal the full spectrum

of RNA targets or their associated affinities (reviewed by Cook

et al., 2015). RNAcompete is a high-throughput in vitro binding

assay that captures a more complete specificity profile by quan-

tifying the relative affinity of an RBP to a pre-defined set of

�250,000 RNA molecules (Ray et al., 2013). However, one limi-

tation of this approach is that the designed RNAs present motifs

in predominantly unstructured contexts, restricting the analysis

to short, mostly unpaired motifs. More recent approaches such

as RNA Bind-n-Seq (RBNS) (Lambert et al., 2014) and RNAcom-

peteS (Cook et al., 2017) perform high-throughput sequencing of

bound RNAs selected from a random pool, yielding a more

comprehensive profile of the sequence and RNA secondary

structural specificity of an RBP.

The RNA binding specificity of �100 human RBPs has been

assessed using various unbiased (de novo) methods (Giudice

et al., 2016), though the diversity of techniques employed pre-

cludes uniform comparison among these factors. To systemati-

cally explore the binding specificities of RBPs at high resolution,

we performed RBNS on more than 70 human RBPs including

diverse RRM and KH domain proteins and some other classes

of RBPs, half of which had previously uncharacterized specific-

ities. RBNS comprehensively and quantitatively maps the RNA

binding specificity landscape of an RBP through a one-step

in vitro binding reaction using a recombinant RBP incubated

with a random pool of RNA oligonucleotides (Lambert et al.,

2014). The assay was typically carried out for each RBP at five

protein concentrations, totaling 400 binding assays that yielded

over 6 billion protein-associated reads, enabling detection not

only of simple sequence motifs but also of preferred structural

and contextual features (Figure 1A). Analyses of these data re-

vealed a pattern in which many proteins bind to similar motifs

but differ in their preferences for additional binding features

such as RNA secondary structure, flanking nucleotide composi-

tion, and bipartite motifs, facilitating recognition of distinct RNA

targets.

RESULTS

High-Throughput RBNS Assay
To determine the binding preferences of a large set of human

RBPs we developed a high-throughput version of RBNS, an

in vitro method that determines the sequence, structure, and

context preferences of RBPs. In this assay, randomized RNA

oligonucleotides (20 or 40 nt) flanked by constant adapter se-

quences were synthesized and incubated with varying concen-

trations of a recombinant protein containing the RBD(s) of an

RBP tagged with streptavidin binding protein (SBP) (Figure 1A,

constructs listed in Table S1). RNA-protein complexes were iso-

lated with streptavidin-conjugated affinity resin, washed, and

bound RNA was eluted and prepared for deep sequencing. Pro-

tein purification, binding assays, and sequencing library prepa-

rations were carried out in 96-well format, increasing scalability

and consistency across experiments (STAR Methods). A typical

experiment yielded �10–20 million unique reads at each protein

concentration, which were compared to a similar number of

reads from a library generated from the input RNA pool (Fig-
ure S1A; Table S2). Inclusion of sequencing adapters flanking

the randomized RNA region simplified library preparation, elimi-

nating ligation biases and amplification of contaminating bacte-

rial RNA carried over from protein purification (Lambert et al.,

2014). The RNA pool is estimated to contain nearly every

20-mer. Thus, RBPs encounter motifs in a broad spectrum of

secondary structural contexts, exceeding that of similar reported

methods (Cook et al., 2015), and enabling fine dissection of

detailed RNA binding preferences (Figure S1B).

Binding Specificities of a Diverse Set of RBPs
RBNS was performed on a total of 78 human RBPs (including a

few described previously) containing a variety of types and

numbers of RBDs (Figure 1B). RBPs were chosen based on a

combination of criteria, including presence of well-established

RBDs, evidence of a role in RNA biology (though this was not

required), and secondary criteria related to expression in

ENCODE cell lines K562 and HepG2 and availability of knock-

down/RNA sequencing (RNA-seq) and/or enhanced crosslinking

and immunoprecipitation (eCLIP) datasets (Van Nostrand et al.,

2017). Comparing the RBDs in this set, the range of amino acid

identity was similar to that of human RBPs overall (Figure 1C).

Together, this set captures a diverse set of human RRM and

KH domain-containing RBPs and includes examples of proteins

with other types of RBDs.

To assess the sequence specificity of each RBP, we calcu-

lated enrichment (‘‘R’’) values of kmers with varying lengths,

where R is defined as the frequency of a kmer in protein-bound

reads divided by its frequency in input reads (Figure 1A, top

right). A mean Pearson correlation across 5-mer R values of

0.96 was observed among experiments performed on the

same RBP at different protein concentrations, indicating high

reproducibility (Figure 1D). A comparison of previously reported

binding specificities for 31 factors also assayed using an

independent array-based assay (Ray et al., 2013) revealed

high correlation with our data (Figures S1C and S1D, mean

Pearson r = 0.72).

Overlapping Specificities of RBPs
To visualize and compare the primary sequence specificities, we

derived sequence motif logos for each RBP by aligning enriched

5-mers (Z score R3, weighted by enrichment above input using

an iterative procedure that avoids overlap issues, Figure 1A, top

right; STAR Methods). For roughly half of the RBPs (41/78), this

method yielded multiple sequence logos, indicating affinity to

multiple distinct motifs that may reflect different binding modes

or binding by distinct RBDs (motif 5-mers are listed in Table

S3). Clustering proteins based on their top logo, paralogs (e.g.,

PCBP1/2/4, RBFOX2/3) clustered tightly (Conway et al., 2016;

Smith et al., 2013) (Figure 2A). However, unexpectedly, many

completely unrelated proteins, often containing distinct types

of RBDs, were also grouped together. Fifteen clusters of RBPs

with highly similar primary motifs (nine with three or more mem-

bers) emerged, leaving 18 RBPs with more distinct motifs

unclustered (STAR Methods). Notably, eight of the 15 clusters

contained two or more proteins with completely different types

of RBDs (e.g., cluster 1 contained RRM-, KH-, and ZF-containing

proteins as well as factors with multiple RBD types). The use of
Molecular Cell 70, 854–867, June 7, 2018 855
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Figure 1. Overview of the High-Throughput RBNS Assay and Computational Analysis Pipeline

(A) Schematic of RBNS assay and pipeline.

(B) Number of RBPs with one or more of the three most common RBD types assayed.

(C) Cumulative distribution of amino acid identity between the most similar pairs of RBDs across all RBPs and those assayed by RBNS.

(D) Pearson r of R values between RBNS assays of the same RBP at different protein concentrations. Inset: correlation of 5-mer R values of HNRNPL at 20 (most

enriched concentration) and 80 nM.
5-mers rather than longer kmers might miss some more

extended motifs that might cluster differently. However, similar

motifs and clusterings were generally obtained when logos

were generated using 6-mers or 7-mers rather than 5-mers

(Table S3).

To more rigorously assess similarities between RBP affinities,

we constructed a networkmapwith edges connecting RBPs that
856 Molecular Cell 70, 854–867, June 7, 2018
had significantly overlapping sets of top 6-mers (which had bet-

ter statistical power than 5-mers for this application), requiring at

least two of the 15 most enriched 6-mers to overlap (Figure 2B,

p = 0.001, hypergeometric test). While the paralogs RBFOX2 and

RBFOX3 were again connected only to each other (both binding

6-mers containing GCAUG), many proteins belonged to larger

highly connected groups, and overall this network was much
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Figure 2. RBPs Bind a Small Subset of the Sequence Space, Characterized by Low-Entropy Motifs

(A) From left to right: dendrogram of hierarchical clustering of RBPs by sequence logo similarity and 15 clusters at indicated branch length cutoff (dashed line);

protein name; colored circles representing nucleotide content of RBP motif (one circle if motif is >66% one base, two half circles if motif is >33% two bases); top

motif logo for each protein; RBD(s), with expressed region underlined; *A natural isoform lacking a canonical RBD.

(B) Network map of RBPs with overlapping specificities. Line thickness increases with number of overlapping 6-mers as indicated. Node outline indicates RBD

type of each protein.

(C) Number of unique top 6-mers among subsamplings of the 78 RBNS experiments versus randomly selected 6-mers.

(D) Edge count between nodes for network maps as shown in (B), drawn using groups of 15 6-mers with decreasing affinity ranks.

(E) Entropy of nucleotide composition of RBNS motifs and simulated motifs. p value was determined by Wilcoxon rank-sum test.

(F) Enrichment of RBNS motifs over simulated motifs among partitions of a 2D simplex of motif nucleotide composition. Significance along margins was

determined by bootstrap Z score (number of asterisks = Z score).
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Figure 3. RBNS-Derived Motifs Are Associated with Regulation of

mRNA Splicing and Stability In Vivo

(A) Overlap of RBNS 6-mers and 6-mers with splicing regulatory activity

(p value determined by hypergeometric test).

(B) Comparison of splicing regulatory scores of, left: RBNS 6-mers and all

other 6-mers; right: all 6-mers binned by their maximumR valueZ score across

all RBNS experiments (p values determined by Wilcoxon rank-sum test).

(C) Left: number of alternative exons regulated by RBM25 as determined by

RNA-seq after RBM25 KD in HepG2 cells. Right: proportion of events covered

by RBNS 5-mers in exonic and flanking intronic regions near alternative exons

excluded upon RBM25 KD (red), included upon RBM25 KD (blue), and a

control set of exons (black). Positions of significant difference from control

858 Molecular Cell 70, 854–867, June 7, 2018
more highly connected than expected (p < 10�5, STAR

Methods). Indeed, for 27 RBPs the highest ranked 6-mer was

also the highest ranked 6-mer of at least one other RBP,

compared to an expected overlap of �1 if RBPs had motifs

distributed randomly across 6-mers (Figure 2C). The excess of

overlaps remained when paralogs and RBPs containing RBDs

sharing at least 40% amino acid identity with another RBP

were excluded (Figures S2A and S2B). Regenerating the network

map with 6-mer sets of progressively decreasing affinity (e.g.,

6-mers ranked 2–16, 3–17, 4–18, etc. for each RBP), we

observed a monotonic decrease in edges (overlaps of two or

more), indicating that 6-mers bound with highest affinity are

most likely to be shared (Figure 2D). These findings support

that many RBPs have convergently evolved to bind similar sub-

sets of motifs.

RBPs Preferentially Bind Low-Complexity Motifs
We noted that most motifs were composed primarily of just one

or two distinct bases (Figure 2A). To assess motif composition

objectively, we measured the Shannon entropy of the nucleotide

composition of each sequence logo, which can range from 0 bits

(for 100% of one base) to a maximum of 2 bits (for 25% of each

base). The entropies of natural RBP motifs were substantially

lower than control simulated motifs (p < 10�4, Wilcoxon rank-

sum test, STAR Methods), indicating that RBP motifs are biased

toward lower compositional complexity (Figure 2E). To examine

the base compositional biases in RBP motifs, we mapped motif

compositions onto a two-dimensional grid (Figure 2F). This anal-

ysis revealed overpopulation at all four corners—reflecting

enrichment for all types of homopolymeric motifs—and also at

some dinucleotide edges, reflecting abundance of A/U-rich (Fig-

ure 2F) and C/U-rich (Figure S2C) motifs (all p < 0.05 using a

permutation test described in STAR Methods). This bias toward

low-complexity motifs contributes to the trend toward reduced

diversity of motifs noted above.

RNA Maps from RBNS and Knockdown RNA-Seq Data
Previously, a number of RNA 6-mers have been identified as

splicing regulatory elements in cell-based screens from various

labs (Ke et al., 2011; Rosenberg et al., 2015; Wang et al., 2012,

2013). To explore the relationship between RBNS motifs and

splicing generally, we considered the set of ‘‘RBNS 6-mers’’ as

the union of the top fifteen 6-mers for all RBPs studied. Consis-

tent with many RBPs being involved in pre-mRNA splicing, we

found that �35% of RBNS 6-mers matched one of these known

splicing regulatory 6-mers (Figure 3A, p = 1.73 10�4, hypergeo-

metric test), and RBNS 6-mers conferred stronger regulation
exons upon KD were determined by Wilcoxon rank-sum test and marked

below the x axis.

(D) Overlap of RBNS 6-mers and 6-mers with 30 UTR regulatory activity (p value

determined by hypergeometric test).

(E) Same as (B), but comparison with 30 UTR regulation rather than splicing

regulation.

(F) Pearson r of eCLIP densities across 100-nt windows of 30 UTRs for all pairs
of eCLIP experiments. Pairs of experiments are grouped by category, with all

pairs not belonging to ‘‘Replicates,’’ ‘‘Paralogs,’’ or ‘‘Similar motifs’’ (sharing

two of top 5 5-mers) placed in ‘‘Other.’’ p values determined byWilcoxon rank-

sum test, ***p < 5 3 10�4, N.S.: p > 0.05.



than non-RBNS 6-mers (Figure 3B, left, p = 63 10�36, Wilcoxon

rank-sum test). Furthermore, higher RBNS enrichment (reflecting

higher affinity to an RBP) was associated with increased splicing

activity (Figure 3B, Spearman ⍴ = 0.08, p < 10�12).

‘‘RNAmaps’’ describing the pattern of context-dependent ac-

tivity of splicing factors have traditionally been built using in vivo

binding data from CLIP sequencing (CLIP-seq) combined with

genome-wide assays of splicing changes in response to RBP

perturbation (Witten and Ule, 2011). To ask whether in vitro

data could be used in place of CLIP data to derive maps of

splicing activity, we integrated RBNS data with RNA-seq data

from K562 and HepG2 cells depleted of specific RBPs by small

hairpin RNA (shRNA) (Van Nostrand et al., 2017). For example,

depletion of RBM25 resulted predominantly in exclusion of

cassette exons (Figure 3C, left), and we found that introns flank-

ing these regulated exons were enriched for RBM25 RBNS mo-

tifs relative to control introns (Figure 3C, right). Together, these

data support that RBM25 promotes exon inclusion when it binds

intronic motifs near alternative exons, consistent with previous

studies of RBM25 (Carlson et al., 2017). This analysis also illus-

trates the potential of these in vitro data to elucidate in vivo

regulation.

By performing similar analyses on all 38 RBNS RBPs for which

we had knockdown (KD) data, we observed that 27 of the 38

RBPs showed significant enrichment of their RBNS-derived

5-mers in either activated or repressed exons or flanking introns

(Figure S3A). These RNA maps were consistent with previously

known patterns of splicing factor activity in many cases, e.g.,

splicing activation by DAZAP1 (Choudhury et al., 2014) and

PUF60 (Page-McCaw et al., 1999) and repression by HNRNPC

(Choi et al., 1986) and PTBP1 (Singh et al., 1995). Some RBPs

not known to participate in splicing regulation exhibited splicing

maps strongly suggestive of direct function (e.g., ILF2 as a

splicing activator). Of note, eight of the nine RBPs with G-rich

motifs in this set were implicated as splicing activators from at

least one region, consistent with the results of an unbiased

screen for intronic splicing enhancers, which identified G-rich

sequences (Wang et al., 2012).

We also observed significant overlap between RBNS 6-mers

and 6-mers previously shown to modulate mRNA levels when in-

serted into reporter 30 UTRs (Oikonomou et al., 2014) (Figure 3D,

p = 3 3 10�5, hypergeometric test). As observed for splicing

regulation, 30 UTR regulatory scores were higher for RBNS

6-mers than non-RBNS 6-mers (Figure 3E, left, p = 4 3 10�10,

Wilcoxon rank-sum test), and regulatory scores were higher for

6-mers with higher RBNS enrichment (Figure 3E, right,

Spearman ⍴ = 0.19, p < 10�11).

We next examined motif density in 30 UTRs of genes whose

expression changed following KD of an RBP to generate

30 UTRRNA expressionmaps. Roughly half of the RBPswith cor-

responding KD data (20/38) had RNA expressionmaps that were

consistent with a role in regulating mRNA levels (Figure S3A,

right), equally split between stabilizing and destabilizing activity.

Interestingly, SRSF5 motifs were highly enriched in 30 UTRs (and
near the end of the open reading frame) of genes upregulated

upon KD (Figure S3B). Binding of SRSF5 to 30 UTRs has been

observed previously (Botti et al., 2017) and may modulate gene

expression levels by linking alternative mRNA processing to nu-
clear export (M€uller-McNicoll et al., 2016). Thus, our assay un-

covers patterns of regulation of both splicing and mRNA levels

by sequence-specific RBPs that supplement existing CLIP-

based RNA maps.

RBPs with Similar Motifs Often Bind Distinct Transcript
Locations
We found strong agreement between in vivo motifs enriched in

eCLIP peaks and corresponding RBNS motifs in most cases,

with 17 of 24 proteins having significant overlap between

5-mers derived in both assays (Figure S3C, adapted from Van

Nostrand et al., 2017). Furthermore, RBNS-enriched 5-mers

were more enriched in peaks identified in multiple eCLIP repli-

cates and/or cell types, which likely represent sites of more

robust and reproducible in vivo binding (Figure S3D). Together,

these observations support that RBNS-identified motifs drive

the in vivo RNA binding specificity of most RBPs.

We and others have observed that RBPs appear to bind to only

a subset of cognate motif occurrences in expressed transcripts

(Taliaferro et al., 2016). However, the extent to which RBPs with

similar binding motifs bind the same targets in vivo is incom-

pletely understood. Comparing 30 UTR binding sites of all

RBPs with eCLIP data, we observed a positive correlation in

binding locations between pairs of paralogs but surprisingly little

correlation between binding locations of pairs of non-paralogous

RBPs that bound similar motifs in vitro (Figure 3F; STAR

Methods). The mean Pearson r of 0.20 observed in these com-

parisons was not different from random pairs of RBPs, even

though in vivo-enriched motifs generally matched those

observed in vitro (Figure S3C). For example, TIA1 and HNRNPC

both bind polyU tracts in vitro and in vivo, but they appear to

often bind distinct polyU sites in transcripts (Figure S3E). The

low correlation between locations of in vivo binding sites of

RBPs with similar motifs could result from various factors,

such as differences in RBP localization leading to differential ac-

cess to transcripts and/or formation of multi-RBP complexes

that may alter RNA specificity (e.g., Damianov et al., 2016). We

hypothesized that additional RNA-intrinsic properties not

captured by canonical short RNA motifs might contribute to

these differences and next focused on leveraging the depth

and sensitivity of the RBNS data to explore this possibility.

RNA Structure Preferences of RBPs
Since potential RBP binding sites in the transcriptome exist in a

variety of structural conformations, and structure is known to

impact RBP binding and regulation (Hiller et al., 2007; Li et al.,

2010; Warf et al., 2009), we assessed RNA secondary structure

preferences for each RBP by computationally folding input and

compositionally matched protein-bound reads for each RBNS

experiment (STAR Methods). We computed the ratio of the

base-pairing probabilities (Ppaired) of the top RBNS 6-mer and

its flanking bases in pull-down libraries relative to input (Figures

4A and S4A). Themajority of RBPs favored reduced base-pairing

of the motif itself, with some like NUPL2 and RBM41 (marked by

arrows) exhibiting extreme sensitivity to structure, and others

more modest sensitivity. Just six proteins favored increased

structure over their motif, with the strongest preference

observed for ZNF326 (Figure S4A, right). Structural preferences
Molecular Cell 70, 854–867, June 7, 2018 859
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Figure 4. RNA Secondary Structural Preferences of RBPs.

(A) The log2(pull-down Ppaired/input Ppaired) for the most enriched pull-down library over each position of the top 6-mer plus 10 flanking positions on each side;

RBPs are grouped by motif clusters in Figure 2A and ordered from greatest to least mean log2(pull-down Ppaired/input Ppaired) over the top 6-mer from top to

bottom within each cluster.

(B) Mean change (log2) in Ppaired over each position of the top 6-mer at different concentrations of NUPL2 (top) and PRR3 (bottom) relative to the input library.

(C) Enrichment of the top 6-mer of NUPL2 (top) and PRR3 (bottom) in 5 bins into which all 6-mers were assigned based on their average Ppaired.

(D) Top: three types of structural contexts considered and the percentage of all 6-mers and RBNS 6-mers (top 6-mer for each of 78 RBPs) found in each context in

pull-down reads. Bottom: log-fold change of the top 6-mer’s recalculated R among 6-mers restricted to each structural context relative to the original R.

(E and F) Left: percentage of each position of the top 6-mer found in the four structural elements for RBM22 (E) and ZNF326 (F) in pull-down reads. Structure logo

for top 6-mer is shown above. Right: representative structure of the top 6-mer pairing with the 50 sequencing adapter (gray) for 6-mers found at the most enriched

positions within the random 20-mer (RBM22, position 5; ZNF326, position 6).

(G) Enrichment of the percentage of pull-down versus input reads containing hairpin loops of various lengths, grouped by RBPs that contain (n = 13) or do not

contain (n = 65) at least one KH domain (p < 0.05, Wilcoxon rank-sum test).

(H) AveragePpaired in random sequence for all 6-mers binned bymaximumR valueZ score across all RBNS experiments (***p < 0.0005 byWilcoxon rank-sum test;

overall Spearman ⍴ = �0.18, p < 10�22).

860 Molecular Cell 70, 854–867, June 7, 2018



at flanking positionsweremore variable, including some proteins

within the same cluster preferring increased structure five or

more bases away from the 6-mer (e.g., BOLL, cluster 10 in Fig-

ure 4A), while others favored decreased base-pairing (e.g.,

PTBP3). Many RBPs showed variable secondary structure pref-

erences at different positions within the top 6-mer. For example,

PRR3 disfavored structure at positions 1–4 of its AUAAGC motif

but actually favored structure at positions 5 and 6 (Figure 4B,

bottom). In contrast, NUPL2, a protein that binds A6 motifs,

strongly disfavored structure at all positions at all tested protein

concentrations.

To assess the effect of RNA secondary structure on enrich-

ment, we recomputed R values for all 6-mers considering

6-mer occurrences in five structure bins ranging from unpaired

(mean Ppaired < 0.2, averaged over the 6 positions) to paired

(average Ppaired R 0.8) (Figure 4C; STAR Methods). Consistent

with the pattern observed in Figure 4B, PRR3’s top 6-mer

was most highly enriched in a moderately structured context

(Ppaired 0.2–0.4, Figure 4C, bottom), while NUPL2’s top 6-mer

was most enriched in the least structured context (Ppaired

0-0.2, Figure 4C, top). For PRR3 and NUPL2, the R values of

the top 6-mer were 3- and 4-fold higher, respectively, in the

most enriched Ppaired bin relative to the least enriched bin,

underscoring the impact of RNA secondary structure on affinity

for these factors. Similar patterns were observed for many

other proteins (full listing in Table S4). We observed a high

correlation between RNA secondary structure preferences

in vitro and those observed in vivo using eCLIP data (Figure S4B),

supporting that structural preferences identified in vitro are rele-

vant in vivo.

RNA Structural Elements Influence Binding of
Some RBPs
To identify specific structures that influence binding, we classi-

fied each base in the pull-down and input reads as being part

of a stem, hairpin loop, interior loop, or multiloop based on pre-

dicted structures (Kerpedjiev et al., 2015). On average, RBNS

6-mers were about 2-fold overrepresented in hairpin loops and

about 2-fold underrepresented in stems compared to all

6-mers (Figure 4D, top; STAR Methods). Correspondingly, the

top 6-mers of many RBPs were more enriched in a loop context

(Figure 4D, bottom), including RBPs of clusters 7, 8, 11, and 14

and almost all members of cluster 15. Fewer RBP motifs were

preferentially enriched in stems (8 RBPs) or bulged stems

(9 RBPs), with generally more modest increases in enrichment

than seen in hairpin loops (all enrichments reported in Table

S4). Among the strongest stem- and bulged stem-preferring

RBPs were the core spliceosomal protein RBM22 (Figure 4E)—

which makes direct contacts with the catalytic RNA structural el-

ements of the U6 small nuclear RNA (snRNA) and the intron lariat

(Rasche et al., 2012; Zhang et al., 2017)—and the zinc-finger

protein ZNF326 (Figure 4F). RBM22 favored a stem with two

bulged bases, while ZNF326 favored a stem with one bulged

base (Figure 4F, right). Unlike most other RBPs, the motifs for

these two proteins showed an uneven distribution along

sequence reads and were commonly predicted to pair with the

50 adapter (Figure S4C). To ensure that these binding prefer-

ences were not overly biased by the specific RNA pool and
adapters used, we performed filter binding experiments with

ZNF326 and confirmed a requirement for both the identified pri-

mary sequence motif and for structure in the absence of flanking

adapters (Figure S4D).

We also observed a correlation between RBD type and struc-

tural element preference. Large hairpin loops were strongly

preferred by 10 of 13 KH-containing RBPs (all but the FUBP fam-

ily), while non-KHRBPs showedmuchmoremodest preferences

for hairpin loops (Figure 4G). Given that most (7/10) of these KH

RBPs contain multiple KH domains, it is possible that relatively

large hairpin loops allow binding of multiple KH domains to the

RNA as has been observed in a crystal structure of NOVA1

(Teplova et al., 2011) and in SELEX analysis of PCBP2 (Thisted

et al., 2001).

We wondered whether RNA structure might have something

to do with our observation made above (Figures 2B–2D) that

the set of RBPs binds a relatively small subset of RNA motifs.

Analyzing folding of random RNAs (Figure 4H) and fragments

of human introns or exons (Discussion), we noted that 6-mers

with higher maximal RBNS enrichment among the 78 RBPs

tended to be less structured than 6-mers with lower maximal

enrichment (overall Spearman ⍴ = –0.18, p < 10�22). Given that

most RBPs prefer to bind unpaired motifs (e.g., Figure 4A and

many previous studies), this observation suggests that many

RBPs have evolved specificity for motifs that are intrinsically

less structured and therefore have more accessible occurrences

in the transcriptome.

Many RBPs Favor Pairs of Short, Spaced Motifs
It is generally thought that most single RBDs make contacts with

3–5 contiguous RNA bases (Auweter et al., 2006). More than half

of the factors in this study contain multiple RBDs (Figure 1B),

either of the same or of different types, that may interact with

pairs of short motifs spaced one or more bases apart, hereafter

referred to as ‘‘bipartite motifs.’’ Structural evidence supporting

binding to bi- and tripartite motifs has been shown for a number

of RBPs (reviewed by Afroz et al., 2015), raising the question of

how widespread this pattern is.

The scale of RBNS sequence data provided statistical power

for the unbiased identification of bipartite motifs. We computed

enrichments for motifs composed of two 3-mer ‘‘cores’’ sepa-

rated by spacers of 0–10 nt, with spacing 0 representing a

contiguous 6-mer motif (Figure 1A; STAR Methods). We found

that DAZAP1, which contains two RRMs, preferred AUA fol-

lowed by a second AUA-containing core spaced by 1–3 nucleo-

tides, with little preference for specific bases in the intervening

spacer (Figure 5A). RBM45, which contains three RRMs, bound

two AC-containing cores separated by a spacer of 1–3 nucleo-

tides, with a slight bias against Gs in the spacer (Figure 5B).

The preference for bipartite motifs over the best contiguous

6-mers for both DAZAP1 and RBM45 was confirmed by filter

assay (Figure S5A). Analysis of all 78 factors revealed that about

one-third of RBPs bound bipartite motifs with similar or greater

affinity than linear 6-mers, with 18 RBPs showing a significant

preference for a bipartite motif over a linear motif at a 5% false

discovery rate (FDR) (Figure 5C; Table S5; STAR Methods) and

an additional 13 RBPs showing more modest preferences for

spaced cores (Figure S5B). Several of the bipartite motif binders
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Figure 5. Many RBPs Bind Bipartite Motifs or Prefer Specific Flanking Nucleotide Compositions

(A and B) Top: sequence logos of bipartite motifs for DAZAP1 (A) and RBM45 (B). Bottom: nucleotide composition of the spacer between both motif cores (left)

and enrichment as a function of the spacing between cores (right).

(C) Core spacing preferences of all RBPs. Each row indicates enrichment as a function of the spacing between cores. Enrichments normalized to maximum value

in each row (outlined in black). *Non-zero spacing is significantly preferred over the best linear 6-mer. RBPs are grouped by motif clusters in Figure 2.

(D) Pearson correlation between RBD identity within an RBP and the similarity between the core motifs (only RBDs of the same type were compared).

(E and F) Flanking nucleotide compositional preferences surrounding the top five 5-mers for NOVA1 (E) and FUBP3 (F). Inset: mean enrichments across all

positions flanking the motif.

(G) Flanking compositional preferences of all RBPs. Enrichment or depletion for each nucleotide surrounding the RBP’s top five 5-mers. Boxes indicate significant

enrichment (log2(enrichment) > 0.1, p < 0.001).

(H) Enrichment of HNRNPK’s top 10 linear 6-mers (right) and top 10 degenerate sequences of length 12 with 6 Cs and 6 Ns (left). Error bars represent the SD of

subsampling the data 1,000 times.

(I) Filter assay validation of HNRNPKbinding to the oligo UUU(CCUCUCUUUUCC)UUU (blue) and the oligo U12 (black) as a negative control. Dot blot of filter assay

shown above with fraction of RNA bound quantified below.
identified by these analyses are consistent with previous reports

(PCBP2, ELAVL4, CELF1, UNK, and NOVA1; Teplova et al.,

2011, 2010; Thisted et al., 2001; Wang and Tanaka Hall,

2001). In addition, we found that MSI1 bound the split motif

UAGNNUAG, which combined with structural evidence of its in-
862 Molecular Cell 70, 854–867, June 7, 2018
dividual RRMs binding to UAG, strongly support MSI1 binding to

UAGNNUAG (Iwaoka et al., 2017).

As expected, preference for a bipartite motif was associated

with the presence of more than one RBD (Figure S5C,

p = 0.023, t test), although a few exceptions were observed.



For example, KHDRBS2 contains a single KH domain but

favored a bipartite motif (Figure S5C). However, this factor also

has a QUA1 (Quaking-1) domain, a domain type that can pro-

mote homodimerization (Meyer et al., 2010), potentially enabling

binding of a bipartite motif as a homodimer.

Certain proteins displayed patterns of enrichment that

increased continuously with longer spacing between cores (Fig-

ure 5C). It is possible that these patterns are driven by multime-

rization and/or aggregation of these proteins. One such factor,

FUS, has a C-terminal Arginine-Glycine (RG)-rich domain that

has been shown to promote cooperative binding to RNA via mul-

timerization (Schwartz et al., 2013). Notably, EWSR1, a FUS pa-

ralog that has a similar domain composition, displayed a similar

preference for increased spacing, suggesting it may also multi-

merize (Schwartz et al., 2015).

Many bipartite cores were highly similar to one another,

providing support for the recent finding that multiple RRMs

within the same protein (known as sibling RRMs) are often the

result of recent tandem RRM duplications (Tsai et al., 2014).

For example, the two RNA cores bound by MSI1 were nearly

identical and MSI1’s two RRMs had a high amino acid identity

of �47%. In contrast, SFPQ favored a bipartite motif consisting

of two very different RNA cores, and its RBDs were much less

similar (�22% identical). Considering all RBPs, we observed

that the percent identity of sibling RBDs within a protein was

positively correlated with the similarity of the bipartite motif

RNA cores (Figure 5D, Pearson r = 0.64, p < 0.01, STAR

Methods). These observations support a model in which the

distinct cores in bipartite motifs are bound by distinct RBDs

within the same protein (with dimerization playing a role in

some cases).

RNA Sequence Context Commonly Influences RBP
Binding
Binding of certain transcription factors may be enhanced by a

particular nucleotide composition adjacent to a high-affinity

motif (Jolma et al., 2013), and similar flanking nucleotide biases

are also seen around motifs within ChIP-seq peaks (Wei et al.,

2010). We hypothesized that adjacent nucleotide context could

play a similar role in modulating RBP specificity by altering local

RNA secondary structure or creating additional interactions with

the RBP.

We identified 28 proteins with a significant preference for a

particular base composition flanking single high-affinity motifs

(considering only reads with exactly one motif; Table S5; STAR

Methods). For example, NOVA1 preferred a C-rich context flank-

ing its motif (Figure 5E), while FUBP3 preferred to bind its motif in

a U-rich context (Figure 5F). We noted an enrichment for RBPs

with KH domains within this set (p < 10�3, Fisher’s exact test),

a group that also favored binding to hairpin loops (Figure 4G).

While particular flanking nucleotide compositions may be corre-

lated with presence of large hairpin loops, we observed a major-

ity of these flanking base compositional preferences even after

controlling for the secondary structure context of the motif, sug-

gesting that nucleotide context effects and secondary structure

can contribute independently to binding (Figure S5D). In most

cases, this nucleotide preference was dependent on the pres-

ence of a motif in the read, suggesting that flanking sequence
promotes or stabilizes RBP binding to a primary motif. However,

some RBPs showed similar nucleotide preferences in the

absence of a high-affinity motif (e.g., FUS and IGF2BP1, Fig-

ure S5E), suggesting that these factors have affinity for degen-

erate sequences with biased nucleotide content.

To explore cases in which biased sequence composition may

better describe anRBP’s specificity than a linearmotif, we calcu-

lated enrichments for patterns with interspersed specific and

degenerate positions with biased nucleotide composition. For

example, HNRNPK, which showed a preference for C bases in

the absence of a high-affinity kmer, had greater enrichment for

the interspersed pattern CNCNCNCNNNCC (enriched 2.9-fold)

than the corresponding contiguous 6-mer CCCCCC (1.11-

fold). In fact, many C-rich interspersed patterns had higher en-

richments than the top linear 6-mers of equal information content

for HNRNPK (Figures 5H and S5F; STAR Methods), a trend that

was not observed for most other RBPs (Figure S5F).

Because such interspersed patterns have not been exten-

sively studied, we confirmed binding of HNRNPK to a represen-

tative of the interspersed pattern CCNCNCNNNNCC using a

filter binding assay (Figure 5I). These interspersed patterns

were also enriched more than 2-fold relative to linear 6-mers in

HNRNPK eCLIP peaks, supporting in vivo binding of such se-

quences (Figure S5G). In all, we identified 17 RBPs whose bind-

ing was well described by interspersed patterns. Of these, 14

bound bipartite motifs (Figure 5C) and showed enrichment for

patterns similar to their previously identified bipartite motifs

(e.g., CELF1, Figure S5H). However, three RBPs showed enrich-

ment for patterns with no more than 2 contiguous specified

bases (FUBP1, HNRNPK, and PUF60; FUBP1 is shown in Fig-

ure S5I). These patterns may therefore represent degenerate

bi- or tripartite motifs, perhaps involving multiple RBDs each

contacting just one or two bases specifically.

Toward a More Complete Characterization of RBP
Specificities
We have emphasized that, in addition to primary motifs, human

RBPs often favor specific secondary structural features, bipartite

motifs, and/or flanking nucleotide composition. To visualize pref-

erences for each of these features among RBPs that bind the

same linear 6-mer, we represented each RBPby a pair of colored

semicircles in a two-dimensional coordinate system. The semi-

circle markers were separated if a bipartite motif was favored,

colored based on flanking nucleotide preferences, and placed

on the grid according to their structural preferences on the motif

itself (x axis ‘‘Ppaired’’) and in the flanking region (y axis ‘‘Pflank’’).

Visualization of RBPs within the AU-rich cluster 1 revealed that

no two RBPs are superimposed in this multidimensional space

(Figure 6A), and similar dispersal was observed for most other

clusters (Figure S6A). Overall, we observed that 9/15 clusters

diverged significantly in at least one feature, and 5/15 diverged

in more than one feature, with bipartite motif spacing being the

most common significant feature (Table S6).

To quantify the extent to which proteins that bind similar

primary motifs differ in contextual features, we computed

‘‘feature-specific’’ R values for the top 6-mer in each cluster.

These feature-specific R values measure the change in 6-mer

enrichment as a function of contextual features, capturing the
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Figure 6. RBPs that Bind Similar Motifs Often Diverge in Sequence Context Preferences

(A) Dispersal of specificities between cluster 1 RBPs. x and y axes represent preference for secondary structure over the motif (x) or flanking regions (y). Circle

color denotes preference for flanking nucleotide composition. Split semicircles indicate preference for a bipartite motif over a linear motif with the distance

between semicircles reflecting preferred spacing of cores.

(B) Pairwise distances (1 – Pearson r) of feature-specificR values for pairs of RBPs within amotif cluster (‘‘intra-cluster’’) compared to distances between controls

(‘‘reps’’). *p < 0.05, **p < 0.005, ***p < 0.0005, Wilcoxon rank-sum test.

(C) Log2 ratio of Ppaired over U5 occurrences and nucleotides directly upstream and downstream in: RBNSmotifs relative to input (top), intronic motifs found eCLIP

peaks relative to motifs in control peaks (middle), intronic motifs near exons with increased inclusion upon RBP KD relative to control introns (bottom). *p < 0.05,

**p < 0.005, ***p < 0.0005, Wilcoxon rank-sum test. Error bars represent the SD of subsampling the data 10,000 times.
RBP’s bias for or against each feature. This simple approach en-

ables measurement of distances varying from 0 (very similar) to 2

(very different) (STAR Methods) in specificities within a cluster

where every protein binds the same motif. For example, while

PCBP2 and RBM23 (cluster 12) both bind C-rich sequences,

PCBP2 avoids structure within its motif (large feature-

specific R) while RBM23 has essentially no structural preference

over itsmotif, yielding a distance of 1.71 for this pair (Figure S6B).

Overall, intra-cluster pairwise distances were significantly higher

than distances calculated between replicate RBNS experiments

at different RBP concentrations for structure, nucleotide context,

and bipartite motifs (Figure 6B).

It is important to understand how RNA binding relates to

regulation. We investigated whether contextual features

observed in vitro contribute to regulation of targets in vivo.

We focused on comparison of HNRNPC and TIA1, which share
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the same top 5-mer U5 but have distinct context preferences

in vitro. Both also have well-established roles in regulating

splicing, which was confirmed by RNA splicing maps (Fig-

ure S3A) and have eCLIP-derived motifs that are identical to

their RBNS-derived motifs (Figure S3C). HNRNPC and TIA1

differ in structure preference over the motif (Ppaired) and flanking

regions (Pflank), with HNRNPC showing a stronger bias against

structure in both locations by RBNS (Figure 6C, top). Examining

eCLIP peaks for each factor, we observed a stronger bias

against structure for HNRNPC than for TIA1 on and flanking

U5 motifs in eCLIP peaks (Figure 6C, middle). Furthermore,

we also observed a stronger bias against structure on and

flanking U5 motifs located downstream of HNRNPC-regulated

exons than for TIA1-regulated exons (Figure 6C, bottom).

Thus, the contextual features identified by our in vitro assay

appear to help distinguish which U5 motifs are bound in vivo



by HNRNPC and which by TIA1, and which motifs are involved

in regulation by each factor.

DISCUSSION

A substantial body of work has aimed to catalog functional RNA

elements and their interacting proteins to gain a more complete

and mechanistic understanding of RNA processing in cells.

Here, using a one-step in vitro binding assay that assesses affin-

ity across the spectrum of oligonucleotides, including contextual

features that influence binding, we characterized over 70 human

RBPs, focusing primarily on RRM, KH, and ZF domain-contain-

ing proteins.

We find that many RBPs bind a relatively small, defined subset

of primary RNA sequence space that is rich in low-complexity

motifs composed primarily of just one or two base types. These

findings are consistent with previous studies identifying AU-, U-,

and G-rich sequences as functional elements that regulate sta-

bility and splicing (Fu and Ares, 2014; Wu and Brewer, 2012).

Certain mono- and di-nucleotide-rich sequences occur in clus-

ters in the transcriptome (Barreau et al., 2006; Cereda et al.,

2014), an arrangement that may facilitate cooperative binding

of these RBPs or facilitate sliding of RBPs along RNA, as has

been shown for HNRNPC binding to long uridine tracts (Cieni-

ková et al., 2014). The set of motifs bound by RBPs have lower

propensity to form secondary structures that might block RBP

binding, both in random sequences (Figure 4H) and in sequences

from the human transcriptome (Figure S6C). Thus, a reasonable

working hypothesis is that accessibility differences may have

guided the long-term evolution of RBP specificity toward a

particular subset of more accessible motifs. The set of RNA mo-

tifs identified here, combined with those compiled in other large-

scale studies (Giudice et al., 2016; Ray et al., 2013), can be used

to identify candidate factors that recognize sequence elements

in transcripts, and to identify genetic variants that may disrupt

function at the RNA level (Soemedi et al., 2017).

Our results indicate that linear sequence motifs are often

insufficient to fully capture RBP binding specificities and that

contextual features such as RNA secondary structure and

base compositional context often contribute to binding speci-

ficity. Proteins with different classes of RBDs exhibited different

tendencies. For example, ZF RBPs favored binding to structured

motifs (Figures S6D and S6E), consistent with a recent study

finding that more than twenty ZF-containing proteins selectively

bound highly structured pre-microRNAs (Treiber et al., 2017).

Proteins with KH domains tended to favor large hairpin loops

and to have preferences for specific flanking base composition

and for bipartite motifs, suggesting that recognition of longer

stretches of RNA by multiple KH domains may be common.

A substantial subset of RBPs preferred bipartite motifs, which

previous structural studies have shown often reflect binding by

distinct RBDs (reviewed by Afroz et al., 2015). Whether specific

RNA structural features and/or flanking nucleotide context

commonly mediate physical interactions with RBPs or merely

present motifs in a favorable context remains to be determined.

Either way, the contextual features identified here may be useful

in discriminating between binding sites of distinct RBPs that

recognize similar primary motifs.
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Cléry, A., and Allain, F.H.-T. (2013). From structure to function of RNA binding

domains. In Madame Curie Bioscience Database (Landes Bioscience),

Available from https://www.ncbi.nlm.nih.gov/books/NBK63528/.

Conway, A.E., Van Nostrand, E.L., Pratt, G.A., Aigner, S., Wilbert, M.L.,

Sundararaman, B., Freese, P., Lambert, N.J., Sathe, S., Liang, T.Y., et al.

(2016). Enhanced CLIP uncovers IMP protein-RNA targets in human pluripo-

tent stem cells important for cell adhesion and survival. Cell Rep. 15, 666–679.

Cook, K.B., Hughes, T.R., andMorris, Q.D. (2015). High-throughput character-

ization of protein-RNA interactions. Brief. Funct. Genomics 14, 74–89.

Cook, K.B., Vembu, S., Ha, K.C.H., Zheng, H., Laverty, K.U., Hughes, T.R.,

Ray, D., and Morris, Q.D. (2017). RNAcompete-S: Combined RNA

sequence/structure preferences for RNA binding proteins derived from a sin-

gle-step in vitro selection. Methods 126, 18–28.

Crooks, G.E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo:

a sequence logo generator. Genome Res. 14, 1188–1190.
866 Molecular Cell 70, 854–867, June 7, 2018
Damianov, A., Ying, Y., Lin, C.-H., Lee, J.-A., Tran, D., Vashisht, A.A., Bahrami-

Samani, E., Xing, Y., Martin, K.C., Wohlschlegel, J.A., and Black, D.L. (2016).

Rbfox proteins regulate splicing as part of a large multiprotein complex LASR.

Cell 165, 606–619.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RBNS k-mer enrichments and logos Van Nostrand et al., 2017 https://www.encodeproject.org/

eCLIP datasets Van Nostrand et al., 2017; This paper GEO: GSE107768; https://www.

encodeproject.org/

RNAcompete k-mer enrichments Ray et al., 2013 http://hugheslab.ccbr.utoronto.ca/

supplementary-data/RNAcompete_eukarya/

Exonic Splicing Elements Ke et al., 2011; Rosenberg et al., 2015 N/A

Intronic Splicing Elements Wang et al., 2012, 2013 N/A

30 UTR Regulatory Elements Oikonomou et al., 2014 N/A

RBP Localization RBP Image Database; The Human

Protein Atlas

http://rnabiology.ircm.qc.ca/RBPImage/;

https://www.proteinatlas.org/

Bacterial and Virus Strains

Rosetta 2 cells Novagen 71403

Stellar Cells Clontech 636763

Oligonucleotides

UUUCCUCUCUUUUCCUUU, HNRNPK This paper N/A

UUUUUUUUUUUU, BOLL and RBM15B This paper N/A

NNACUUACNN, RBM45 linear This paper N/A

NACANNACGN, RBM45 split This paper N/A

NNUAUAUANNN, DAZAP1 linear This paper N/A

NAUANNNUAGN, DAZAP1 split This paper N/A

NNNNNNNNNN, Control Random This paper N/A

CGACGAUCCAAGUGGAUGUCAUG, ZNF326 This paper N/A

CUCGAGCACAAGUGUGUCGAAUG, ZNF326

structure no motif

This paper N/A

CUCGAGCACAAGUGGAUGUCAUG, motif

no structure

This paper N/A

Sequences in Table S2 This paper N/A

CCTTGACACCCGAGAATTCCAN40GATCG

TCGGACTGTAGAACTCCCTATAGTGAGTC

GTATTA, RBNS randomer template

This paper N/A

TAATACGACTCACTATAGGG, T7

promoter oligo

This paper N/A

GCCTTGGCACCCGAGAATTCCA, RT primer This paper N/A

AATGATACGGCGACCACCGAGATCTACA

CGTTCAGAGTTCTACAGTCCGACGATC,

PCR primer

This paper N/A

Software and Algorithms

R Studio v.1.0.44 R Studio https://www.rstudio.com/products/rstudio/

download/

Cytoscape 3.4.0 Cytoscape http://www.cytoscape.org/

Clustalw2 v.2.1 https://doi.org/10.1093/bioinformatics/

btm404

http://www.clustal.org/clustal2/

Rmats https://doi.org/10.1073/pnas.1419161111 http://rnaseq-mats.sourceforge.net/

RNAfold 2.1.6 https://academic.oup.com/nar/article-

lookup/doi/10.1093/nar/gkn188

https://www.tbi.univie.ac.at/RNA/

changelog.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Forgi 0.30 http://rnajournal.cshlp.org/lookup/doi/10.

1261/rna.047522.114

https://viennarna.github.io/forgi/

DESeq http://genomebiology.biomedcentral.com/

articles/10.1186/gb-2010-11-10-r106

https://bioconductor.org/packages/release/

bioc/html/DESeq.html

Bedtools 2.2.6.0 https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/

btq033

http://bedtools.readthedocs.io/en/latest/

Samtools https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/

btp352

http://samtools.sourceforge.net/

RBNS pipeline This paper https://bitbucket.org/pfreese/rbns_pipeline/

overview

R v.3.4.2 The R Project https://www.r-project.org/

Python 2.7 Python https://www.python.org/

Other

Qproteome Bacterial Protein Prep Kit QIAGEN 37900

Protease inhibitor cocktail tablets Roche 11836170001

GSTrap FF Columns General Electric 17-5130-01

GSTrap 96-well Protein Purification Kit General Electric 28-4055

Steriflip-GP, 0.22 mM, polyethersulfone Millipore SCGP00525

Quick Start Bradford 1X Dye Reagent Bio-Rad 500-0205

NuPAGE Novex 4%–12% Bis-Tris Protein Gel Invitrogen NP0321BOX

NuPAGE LDS Sample Buffer Invitrogen NP0008

Amicon Ultra-4 Centrifugal Filter Unit Millipore UFC801024

Zeba Spin Desalting Columns, 7K MWCO,

0.5 mL

Thermo Fisher Scientific 89882

IPTG Invitrogen 15529-019

T7 polymerase New England Biolabs M0251

Ribonucleotide Set New England Biolabs N0450

NuPAGE Novex 10% TBE Urea Gel Invitrogen EC6875BOX

Nanosep Column 0.2 or 0.45 mM Pall ODM02C35

Hi-Fidelity PCR Master Roche 12140314001

In-Fusion HD Cloning Kit Clontech 638910

Dynabeads MyOne Streptavidin T1 Thermo Fisher Scientific 65601

Ampure XP Beads Beckman A66514

Biotin Sigma B4501

Phusion Polymerase New England Biolabs M0530

Betaine Sigma B0300

SuperScript III Thermo Fisher Scientific 18080093

96-well dot-blot manifold Bio-Rad 1703938

Polynucleotide Kinase New England Biolabs M0201S

Nitrocellulose membrane Amersham 10600003

Hybond membrane General Electric RPN203B

ATP [g-32P] PerkinElmer various

G25 micro columns General Electric 27532501
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris-

topher Burge (cburge@mit.edu).
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METHOD DETAILS

Cloning of RNA Binding Protein Domains
In most cases, RBPs were selected from a curated set of high-confidence annotations consisting of factors with well-defined RNA

binding domains or with previous experimental evidence of RNA binding (Van Nostrand et al., 2017). Regions of each protein con-

taining all RBDs plus�50 amino acids flanking the RBD were cloned into the pGEX6 bacterial expression construct (GE Healthcare).

A list of all constructs generated and primer sequences used is given in Table S1.

Bacterial Expression and Protein Purification
Transformed Rosetta Cells (Novagen) were cultured in SuperBroth until optical density reached 0.6, cultures were transferred to 4�C
and allowed to cool. Protein expression was induced for 14-20 hr with IPTG at 15�C. Cells were pelleted, lysed (Qproteome Bacterial

Protein Prep Kit, QIAGEN) for 30 min in the presence of protease inhibitor cocktail (Roche), sonicated and clarified by centrifuging

at >8,000 rpm, passed through a 0.45 mM filter (GE) and purified using GST-Sepharose in either column format (GST-trap FF, GE)

or 96-well format (GSTrap 96-well Protein Purification Kit, GE). Generally, 250mL bacterial cultures used for column purifications

and 50mL for 96-well plate purifications (note: 8 wells of a 96-well plate were used per protein so that up to 12 proteins were purified

per plate at a time). Eluted proteins were concentrated by centrifugation (Amicon Ultra-4 Centrifugal Filter Units) and subjected to

buffer exchange (Zeba Spin Desalting Columns, 7K MWCO, Life Technologies) into final buffer (20mM Tris pH 7, 300mM KCl,

1mM DTT, 5mM EDTA, 10% glycerol). Proteins were quantified using Bradford Reagent (Life Technologies) and purity and quality

of protein was assessed by PAGE followed by Coomassie staining (with few exceptions protein gels are shown on the https://

www.encodeproject.org/search/?type=Experiment&assay_title=RNA+Bind-N-Seq&assay_title=RNA+Bind-n-Seq).

Production of Random RNAs by In Vitro Transcription
Single-stranded DNA oligonucleotide and random template were synthesized (Integrated DNA Technologies) and gel-purified as pre-

viously described (Lambert et al., 2014). Synthesis of random region of the template DNA oligo was hand-mixed to achieve balanced

base composition. An oligo matching T7 promoter sequence was annealed to the random template oligo by mixing in equal parts

bringing to 70�C for 2 min and allowing to cool by placing at room temperature.

T7 Template: 50 CCTTGACACCCGAGAATTCCA(N)20GATCGTCGGACTGTAGAACTCCCTATAGTGAGTCGTA

T7 oligo:

50 TAATACGACTCACTATAGGG

RNA was synthesized by transcribing 6uL of 25uM annealed template and T7 oligo in a 100 mL reaction (Hi-Scribe T7 transcription

kit (NEB) according to manufacturer’s protocol) or with a custom protocol using T7 polymerase (NEB) for larger-scale preps. RNAs

were then DNase-treated with RQ1 (Promega) and subjected to phenol-chloroform extraction. RNA was suspended in nuclease free

water and resolved on a 6% TBE-Urea gel (Life Technologies). RNA was excised and gel-extracted as previously reported (Lambert

et al., 2014). RNA was aliquoted and stored at �80�C.
Final transcribed RNA with sequencing adapters:

GGGGAGUUCUACAGUCCGACGAUC(N)20UGGAAUUCUCGGGUGUCAAGG

RNA Bind-n-Seq Assay
All steps of the following binding assaywere carried out at 4�C. DynabeadsMyOne Streptavidin T1 (Thermo) werewashed 3X in bind-

ing buffer (25mM tris pH 7.5, 150 mM KCl, 3mM MgCl2, 0.01% tween, 500 ug/mL BSA, 1 mM DTT). 60 uL of beads per individual

protein reaction were used. 60 uL RBP diluted (see below for protein concentrations used) in binding buffer were allowed to equil-

ibrate for 30 min at 4�C in the presence of 60 uL of washed Dynabeads MyOne Streptavidin T1. After 30 min of incubation, 60 uL of

random RNA diluted in binding buffer was added bringing the total volume to 180 uL. The final concentration per reaction of each of

the components was 1uM RNA; 5, 20, 80, 320 or 1300 nM of RBP; and 60uL of Dynabeads MyOne Streptavidin T1 stock slurry

washed and prepared in binding buffer. Each reaction was carried out in a single well of a 96-well plate. After 1 hr, RBP-RNA com-

plexes were isolated by placing 96-well plate on a magnetic stand for 2 min. Unbound RNA was removed from each well and the

bound RNA complexes werewashedwith 100 uL of wash buffer (25mM tris pH 7.5, 150mMKCl, 0.5mMEDTA, 0.01% tween). Imme-

diately after adding wash buffer the plate was placed on the magnet and wash was removed after �1min. This procedure was

repeated 3 times. RBP-RNA complexes were eluted from Dynabeads MyOne Streptavidin T1 by incubating reaction at room tem-

perature for 15 min in 25 uL of elution buffer (4mM biotin, 1x PBS), the eluate was collected, the elution step was repeated, and el-

uates were pooled. RNA was purified from elution mixture by adding 40 uL AMPure Beads RNAClean XP (Agencourt) beads and 90

uL of isopropanol and incubating for 5 min. 96-well plate was placed on a magnetic stand and supernatant was discarded. Beads

were washed 2X with 80% ethanol, dried, and RNA was eluted in 15 uL of nuclease-free water. The extracted RNA was reverse tran-

scribed into cDNAwith Superscript III (Invitrogen) according tomanufacturer’s instructions using the RBNSRTprimer. To prepare the

input random library for sequencing, 0.5 pmol of the RBNS input RNA pool was also reverse transcribed. To make Illumina

sequencing libraries, primers with Illumina adapters and sequencing barcodes were used to amplify the cDNA by PCR using Phusion

DNA Polymerase (NEB) with 10-14 PCR cycles. PCR primers always included RNA PCR 1 (RP1) and one of the indexed primers as

previously reported (Lambert et al., 2014). PCR products were then gel-purified from 3% agarose gels and quantified and assessed
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for quality on the Bioanalyzer (Agilent). Sequencing libraries for all concentrations of the RBP aswell as the input library were pooled in

a single lane and sequenced on an Illumina HiSeq 2000 instrument.

Data Access
The 78 RBNS datasets described here can be obtained from the ENCODE project website at https://www.encodeproject.org/

search/?type=Experiment&assay_title=RNA+Bind-N-Seq&assay_title=RNA+Bind-n-Seq and via the Accession Numbers in

Table S3.

RNA Bind-n-Seq Data Processing and Motif Logo Generation
RBNS k-mer enrichments (R values) were calculated as the frequency of each k-mer in the pull-down library reads divided by its fre-

quency in the input library; enrichments from the pull-down library with the greatest enrichment were used for all analyses of each

respective RBP. Mean and standard deviation of R values were calculated across all 4k k-mers for a given k to calculate the

RBNS Z-score for each k-mer.

RBNSmotif logos weremade from following iterative procedure on themost enriched pull-down library for k = 5: themost enriched

kmer was given a weight equal to its enrichment over the input library ( = R–1), and all occurrences of that kmer were masked in both

the pull-down and input libraries so that stepwise enrichments of subsequent kmers could be used to eliminate subsequent double

counting of lower-affinity ‘shadow’ k-mers (e.g., only GGGGA occurrences not overlapping a higher-affinity GGGGG would count

toward its stepwise enrichment). All enrichments were then recalculated on the masked read sets to obtain the resulting most en-

riched k-mer and its corresponding weight ( = stepwise R-1), with this process continuing until the enrichment Z-score (calculated

from the original R values) was less than 3. All k-mers determined from this procedure were aligned to minimize mismatches to

the most enriched k-mer, with a new motif started if the k-mer could not be aligned to the most enriched k-mer in one of the

following 4 ways: one offset w/ 0 mismatches (among the 4 overlapping positions); 1 offset w/ 1 mismatch; no offset w/ 1 mismatch;

2 offsets w/ 0mismatches. The frequencies of each nucleotide in the position weight matrix, as well as the overall percentage of each

motif, were determined from the weights of the individual aligned k-mers that contributed to that motif; empty unaligned positions

before or after each aligned k-mer were given pseudocounts of 25% of each nucleotide, and outermost positions of the motif

logo were trimmed if they had unaligned total weight > 75%. To improve the robustness of the motif logos, the pull-down and input

reads were each divided in half and the above procedure was performed independently on each half; only k-mers identified in cor-

responding motif logos from both halves were included in the alignments to make the final motif logo (the weight of each k-mer was

averaged between the two halves). In Figure 2A, only the top RBNSmotif logo is shown if there were multiple (all motifs displayed on

the ENCODEportal within the ‘‘Documents’’ box of each experiment, with the proportion of eachmotif logo determined by computing

the relative proportion of each motif’s composite k-mer weights). Motif logos were made from the resulting PWMs with Weblogo 2.0

(Crooks et al., 2004). In addition to those displayed for 5-mers with a Z-score = 3 cutoff, for comparison motif logos were also made

using: 5-mers with Z-score = 2 cutoff, 6-mers with Z-score = 2 cutoff, and 6-mers with Z-score = 3 cutoff; additionally, different

criteria for when to start a new logo versus add to an existing one were explored. Logos for 5-mers with Z-score = 3 cutoff and

the rules for starting a new motif described above appeared to strike the best balance between capturing a sufficient number of

k-mers to accurately represent the full spectrum of the RBP’s binding specificity but not creating highly similar secondary

motifs, so these parameters were used across all 78 RBPs. The RBNS pipeline is available at: https://bitbucket.org/pfreese/

rbns_pipeline/overview.

Clustering of RBNS Motifs
A Jensen-Shannon divergence (JSD)-based similarity score between each pair of top RBNSmotif logos was computed by summing

the score of the j overlapping positions between RBP A and RBP B:

X
aligned pos: i = 1;:::;j

infoA;i 3 infoB;i 3

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSD

h
ACGU
����!

A;i kACGU
����!

B;i

ir �

where infoA,i is the information content in bits of motif A at position i and ACGUA,i is the vector of motif A frequencies at position i

(vectors sum to 1.)

This score rewards positions with higher information content (scaled from positions with 100% one nucleotide given maximum

weight to degenerate positions with 25% each nucleotide given zero weight) and more aligned positions (more positions j contrib-

uting to the summed score).

This similarity score was computed for each possible overlap of the two logos (subject to at least four positions overlapping, i.e.,

j R 4), and the top score with its corresponding alignment offset was used. The matrix of these scores was normalized to the

maximum score over all RBP pairs and clustered using the linkage function with centroid method in scipy.cluster.hierarchy to obtain

the dendrogram shown in Figure 2A, with the 15 RBP groupings derived from amanually-set branch length cutoff. This branch length

cutoff was chosen to balance the competing interests ofmaximizing the number of paralogous proteins within the same cluster (more

stringent cutoffs eliminated PCBP4 from the cluster containing PCBP1 and PCBP2 and failed to cluster RBM4 and RBM4B) and
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minimizing differences between primary motifs within the same cluster (less stringent cutoffs included the UAG-containing MSI1/

UNK/HNRNPA0 motifs within the same cluster as the AU-rich RBPs, for example).

Comparison with RNAcompete
5-mer scoreswere derived frompublicly available 7-mer Z-scores by computing themean across all 7-mers containing a given 5-mer

(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/). Correlations between RBNS and RNA-compete

experiments were computed by taking the Pearson correlation of Z-scores for all 5-mers which had a Z-score R 3 for at least

one of the 31 RBPs in common between both assays.

Overlap of RBNS 6-mers with Splicing and Stability Regulatory Elements
Splicing regulatory elements were taken from: ESS and ESE: Ke et al. (2011) and Rosenberg et al. (2015); ISE: Wang et al. (2012); ISS:

Wang et al. (2013).

30UTR regulatory 6-mers were derived from (Oikonomou et al., 2014). Only 6-mers with R 100 occurrences across all designed

sequences were used (totaling 1303 6-mers) in order to derive a mean 6-mer score with sufficient coverage in different contexts.

6-mer repressor and activator scores were obtained by averaging scores (log2 frequency as described in the original manuscript)

across all oligos containing that 6-mer in the low (L10) and high (H10) Dual-reporter Intensity Ratio bins, respectively. Activator

and repressor scores were averaged across both replicates (Libraries A and B). 6-mers with an overall score R 0.25 were used,

where regulatory score = jlog2(repressor score)-log2(activator score)j.

Analysis of eCLIP for Motif Discovery, Regulation, and Overlapping Targets
eCLIP datasets were produced by the Yeo Lab through the ENCODE RBP Project and are available at https://www.encodeproject.

org/search/?type=Experiment&assay_title=eCLIP and via GEO.

For all analyses, only eCLIP peaks with an enrichment over inputR 2 were used. Peaks were also extended 50 nucleotides in the 50

direction as the 50 start of the peak is predicted to correspond to the site of crosslink between the RBP and the RNA.

To produce eCLIP logos in a similar manner for comparison with RBNS logos, an analogous procedure to creating the RBNSmotif

logos was carried out on the eCLIP peak sequences: the two halves of the RBNS pull-down reads were replaced with the two eCLIP

replicate peak sequences, and the input RBNS sequences were replaced by random regions within the same gene for each peak that

preserved peak length and transcript region (50 and 30 UTR peaks were chosen randomly within that region; intronic and CDS peaks

were shuffled to a position within the same gene that preserved the peak start’s distance to the closest intron/exon boundary

to control for sequence biases resulting from CDS and splice site constraints). The enrichment Z-score threshold for 5-mers

included in eCLIP logos was 2.8, as this threshold produced eCLIP logos containing the most similar number of 5-mers to that of

the Z = 3 5-mer RBNS logos. Each eCLIP motif logo was filtered to include only 5-mers that occurred in both corresponding eCLIP

replicate logos. eCLIP motif logos were made separately for all eCLIP peaks, only 30UTR peaks, only CDS peaks, and only intronic

peaks, with the eCLIP logo of those 4 (or 8 if CLIP was performed in both cell types) with highest similarity score to the RBNS logo

shown in Figure S3C, where the similarity score was the same as previously described to cluster RBNS logos. To determine overlap

significance of RBNS and eCLIP, a hypergeometric test was performed with the 5-mers in all (not just the top) logos for: RBNS logo

5-mers, eCLIP logo 5-mers (for peaks in the region with highest similiarity score to the RBNS logo), and 5-mers in their intersection

among the background of all 1,024 5mers; overlap was deemed significant if p < 0.05.

All eCLIP/RBNS comparisons were for the same RBP with the following exceptions in which the eCLIP RBP was compared to a

paralogous RBNS protein: KHDRBS1 (KHDRBS2 RBNS); PABPN1 (PABPN1L RBNS); PTBP1 (PTBP3 RBNS); PUM2 (PUM1 RBNS);

and RBM15 (RBM15B RBNS).

For Figure 3G, the Pearson correlation between eCLIP experiments was assessed by computing the mean eCLIP coverage across

30UTRs of all genes. 30 UTRswere split into windows of�100 nucleotides and themean base-wise coverage (eCLIP coverage divided

by input coverage) was calculated in each window. Pairs of RBPs were assigned as paralogs according to their classification in

Ensembl. Pairs of RBPs were assigned as having overlapping motifs if at least 2 of their 5 top 5-mers overlapped; RBPs with spec-

ificities determined from RBNS or RNAcompete (Ray et al., 2013) were pooled.

Analysis of RNA-Seq Datasets for Regulation and RBNS Expression and Splicing Maps
RNA-seq after shRNA KDs of individual RBPs in HepG2 and K562 cells (two KD and two control RNA-seq samples per RBP) were

produced by the Graveley Lab as part of the ENCODE RBP Project and are available at: https://www.encodeproject.org/search/?

type=Experiment&assay_title=shRNA+RNA-seq.

Splicing changes upon KD were quantified with MATS (Shen et al., 2012), considering only skipped exons (SEs) with at least 10

inclusion + exclusion junction-spanning reads and a c between 0.05 and 0.95 in the averaged control and/or KD samples. SEs

that shared a 50 or 30 splice site with another SE (i.e., those that are part of an annotated A30SS, A50SS, or Retained Intron) were elim-

inated. If multiple pairs of upstream and downstream flanking exons were quantified for an SE, only the event with the greatest num-

ber of junction-spanning reads was used. SEs significantly excluded or included upon KD were defined as those with p < 0.05 and

jDcj R 0.05. Control SEs upon KD were those with p = 1 and jDcj % 0.02.
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Differentially expressed genes upon KD were called from DEseq2 (Love et al., 2014), considering genes that had a ‘baseMean’

coverage of at least 1.0 and an adjusted p < 0.05 and jlog2(FC)j R 0.58 (1.5-fold up or down upon KD). Candidate control genes

upon KD were taken from those with p > 0.5 and jlog2(FC)j% 0.15; from this set of genes, a subset matched to the deciles of native

(i.e., before KD) gene expression levels of the differentially expressed genes was used. The last 50nt of each gene’s open reading

frame and 30UTR sequence were taken from the Gencode version 19 transcript with the highest expression in the relevant cell

type (HepG2 or K562).

‘RBNS splicingmaps’ weremade by taking the three sets of SEs included, excluded, or control uponKD and extracting their exonic

and upstream/downstream flanking 250nt sequences. At each position of each event, it was determined whether the position over-

lapped with one of the top 10 RBNS 5-mers for that RBP in any of the five registers overlapping the position. Then to determine if the

RBNS density was significantly higher or lower for included/excluded SEs at a position relative to control SEs at that position, the

number of positions in a 20bp window on each side (total 41 positions) covered by RBNS motifs was determined for each of

the events, with significance determined by p < 0.05 in aWilcoxon rank-sum test on the control versus changed events in the desired

direction upon KD. Exonic regions were deemed to have ESE or ESSRBNS regulatory activity if 20 of the 100 exonic positions among

SEs excluded or included upon KD, respectively, had significantly higher RBNS motif coverage than control SEs. The upstream and

downstream intronic regions were each individually deemed as ISE or ISS regions if 50 of the 250 intronic positions had significantly

higher RBNS motif coverage. For each significant region for each RBP, the ratios of log2(RBNS density over changing SEs/RBNS

density over control SEs) of all significant positions in that region were summed, and the maximum value was normalized to 1

over all RBPs.

‘RBNS stability maps’ were made in an analogous manner, but for genes up- or downregulated compared to control genes upon

KD. The 30 UTR sequence was divided into 100 segments of roughly equal length and the proportion of positions covered by RBNS

motifs in each segment were used for each bin of the meta-30 UTR. An RBPwas deemed to have significant RBNS regulatory activity

if 10 of the 100 positions of the meta-30 UTR for up- or downregulated genes had increased RBNS density relative to control genes.

Generation of Random Sets of Ranked 6-mer Lists with Edit Distances to Top 6-mer Matching RBNS
Because the ranked lists of top enriched k-mers (e.g., the top 15 6-mers) are highly constrained depending onwhat themost enriched

k-mer is (e.g., 6-mers 2-15 are typically Hamming distance of 1 and/or shifted by 1 from the top 6-mer), as background sets for com-

parison to actual RBNS 6-mer lists we sought to create groups of 6-mers that matched the observed RBNS patterns of Hamming

distances and shifts from the top 6-mer for any given randomly selected k-mer. To do this, for each of the 78 RBNS experiments

we first calculated the edit distance from 6-meri to 6-mer1, where 6-mer1 is themost enriched 6-mer and i = 2,., 15 is the ith enriched

6-mer (e.g., 6-mer8 might have a mismatch at position two compared to 6-mer1 and then be shifted to the right by 1 position). Then,

for all 4,096 starting 6-mers, we created 78 ranked lists of 15 6-mers, each of whichmatched the observed edit distances to the top 15

list of an actual RBNS experiment. The expected number of network edges in Figure 2B, and the ‘random’ number of edges in Fig-

ure 2D were performed by selecting random lists from these 4,096*78 possibilities.

RBNS RBP Groups without Paralogs or RBPs with any RBD Pair Sharing 40% Identity
No Paralogs (n = 52): A1CF, BOLL, CELF1, CNOT4, CPEB1, DAZ3, EIF4G2, ELAVL4, ESRP1, EWSR1, FUBP1, HNRNPA2B1,

HNRNPC, HNRNPK, HNRNPL, IGF2BP1, ILF2, MBNL1, NUPL2, PABPN1L, PRR3, PTBP3, PUM1, RBFOX2, RBM15B, RBM22,

RBM23, RBM24, RBM25, RBM4, RBM41, RBM45, RBM47, RBM6, RBMS2, RC3H1, SF1, SFPQ, SNRPA, SRSF10, SRSF11,

SRSF2, SRSF4, SRSF8, TARDBP, TIA1, TRA2A, TRNAU1AP, UNK, ZCRB1, ZFP36, ZNF326

No RBPs sharing >40% identity among any RBDs (n = 47): A1CF, BOLL, CELF1, CNOT4, CPEB1, EIF4G2, ELAVL4, EWSR1,

FUBP3, HNRNPA0, HNRNPCL1, HNRNPDL, HNRNPH2, HNRNPL, IGF2BP1, ILF2, KHDRBS3, MBNL1, NOVA1, NUPL2, PABPN1L,

PCBP2, PRR3, PTBP3, PUF60, PUM1, RBFOX3, RBM15B, RBM22, RBM24, RBM25, RBM41, RBM45, RBM4B, RBM6, RBMS2,

SFPQ, SNRPA, SRSF11, SRSF8, SRSF9, TARDBP, TIA1, TRA2A, TRNAU1AP, ZFP36, ZNF326

Pairwise RBD alignments were performed using ClustalW2 (Larkin et al., 2007) and percent identities (as shown in Figures 1C and

5D) were calculated as the percentage of identical positions relative to the number of ungapped positions in the alignments.

Network Map of Overlapping Affinities
The lists of top 15 6-mers for each RBP were intersected to obtain the number in common - those with 2 or more were deemed sig-

nificant and connected by an edge (p < 0.05 by Hypergeometric test, as well as by simulations based on the empirical distribution

from random sets of ranked 6-mer lists with edit distances to top 6-mer matching RBNS as described above). The resulting network

was visualized with Cytoscape (Shannon et al., 2003).

Motif Entropy Analysis
To construct a set of ‘simulated’ motifs that matches the overall nucleotide composition of the 78 RBNS motifs but removes any po-

sitional correlations within a motif, individual columns of each RBNSmotif (including all motifs for an RBP if there was more than one)

were pooled to be sampled from. A ‘simulated’ motif was constructed by randomly sampling 5 or 6 columns (with probability 2/3 and

1/3, respectively, to roughly match the lengths of RBNS motifs) from this pool and concatenating them, repeated to construct

100,000 shuffled motifs.
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The frequency of the four bases in each logowas calculated by averaging over all positions in themotif. This frequency vector ( = [fA,

fC, fG, fU], fA+fC+fG+fU = 1) was mapped onto a square containing corners at [+/�1, +/�1] using two different orderings of the 4 cor-

ners, which together contain all 6 dinucleotide combinations (AC, AG, AU, CG, CU, GU) as edges:
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To map the frequency vector to its coordinates (u, v) within the unit circle, the frequency vector was normalized to the largest

component:

F= ½FA;FC; FG;FU�= ½fA=fmaxfC=fmax; fG=fmax; fU=fmax�; where fmax =maxðfA; fC; fG; fUÞ
jF j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
A +F2

C +F2
G +F2

U

q
and (u, v) was computed as: �

u
v

�
=
FA A

!
+FCC

!
+ + FUU

!ffiffiffi
2

p jF j
The elliptical grid mapping was used to convert the (u, v) coordinates within the unit circle to the corresponding position (x, y) within a

square containing corners at [+/�1, +/�1]:
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The simplex grid shown was divided into 11 equal parts along both dimensions, and the density in each of the 121 squares was

computed for the 78 RBNS motifs and 100,000 shuffled motifs to obtain enrichments.

To determine significance via bootstrapping, 1,000 different shuffledmotif distributions over the grid were computed. In each of the

1,000 bootstraps, the 100,000 shuffled motifs were drawn from a different starting pool of motif columns: rather than all 78 RBPs’

motifs contributing once to the pool, a random sampling (with replacement) of the 78 RBPs was performed, and those motifs’

columns served as the starting pool for the 100,000 shuffled motifs. The mean and standard deviation of these 1,000 bootstraps
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were computed for each margin, and margins for which the density of the 78 RBNS motif logos had a Z-score greater than 2 were

marked significant (number of asterisks = Z-score, rounded down).

RNA Secondary Structure Analysis
The RNA base-pairing probability was extracted from the partition function of RNAfold: ‘‘RNAfold -p–temp=X,’’ where X was 4� or
21�C depending on what temperature the binding reaction was conducted at (See Table S3) (Lorenz et al., 2011). For each pull-

down library, reads were randomly selected to match the distribution of C+G content among input reads; all enrichments were re-

calculated for these C+G-matched pull-down reads for Figures 4 and 6. Reads were folded with the 50 and 30 adapters (24 and 21 nt,

respectively), resulting in folded sequences of length 65 and 85 for 20-mer and 40-mer RBNS experiments, respectively.

Secondary structural element analyses were performed by using the forgi software package (Kerpedjiev et al., 2015). For each

read, to mirror the partition function rather than relying solely on the Minimum Free Energy structure, 20 random suboptimal struc-

tureswith probabilities equal to their Boltzmannweights were sampled and averaged over (‘‘RNAsubopt–temp=X—stochBT=20’’). In

Figure 4D, 6-mers counting toward: ’loop’ were: H6, M6, I6; ‘stem’ was S6; ‘bulged stem’ were 6-mers matching the pattern SXXXXS,

where XXXX contained 1-3 S.

For Figures 6A, 6B, S6A, and S6B, bin limits for the motif structure analyses (Ppaired) were: 0-0.2 (bin 1); 0.2-0.4 (bin 2); 0.4-0.6

(bin 3); 0.6-0.8 (bin 4); and 0.8-1.0 (bin 5). Bin limits for flanking structure analyses (Pflank) were: 0-0.3 (bin 1); 0.3-0.45 (bin 2);

0.45-0.6 (bin 3); 0.6-0.75 (bin 4); 0.75-1.0 (bin 5). Ppaired was calculated as the average over the six positions of the 6-mer; Pflank

was calculated as the average over all other positions in the read. The continuous measures of preference for motif and flanking pref-

erence for the x- and y-axes in Figures 6A and S6A were computed as:

2 � log2
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:

RBNS structure profiles were compared to eCLIP structure profiles in the region with the greatest number of eCLIP peaks.

Bound RBNS motifs were selected from the transcriptome region that showed the highest enrichment for the number of peaks

(50 UTR/30 UTR/introns/CDS). Motifs that were not bound were selected from the same gene regions as bound motifs and matched

for the same genes. Motifs were folded with 50 nucleotides of flanking sequence on both sides using RNAfold (Lorenz et al., 2011).

Motifs (both bound and not bound) were then binned by their mean base-pairing probability (same bins as RBNS), and the fraction of

bound motifs in each bin was computed. The monotonicity of R over Ppaired bins for RBNS and eCLIP was computed by taking all 10

comparisons over the 5 bins, adding 1 if Rwas greater in the higher Ppaired bin or subtracting 1 if it was lower in the higher Ppaired bin.

The structure of 6-mers in random sequences (Figure 4H) was calculated by creating random 65-mers, folding them at 4C, and

computing the mean Ppaired over each of the 15 6-mers within the region corresponding to the random RBNS 20-mer positions

(i.e., positions 25-44 of the 65-mer, inclusive). The structure of 6mers in human Gencode version 19 transcript regions (Figure S6E)

was calculated by taking all consecutive 65 nt sequences (the length of the RBNS 20-mer + adapter sequences) fully within one of the

four respective transcript regions. Each 65 nt sequence was folded at 37�C, and the mean Ppaired over each of the 15 6-mers within

the region corresponding to the randomRBNS20-mer positionswas calculated. ThemeanPpaired for each 6-merwas then computed

over all occurrences of that 6-mer within the given transcript region, and the 6-mer was classified as being composed of ‘‘1 base’’

(e.g., GGGGGG), ‘‘2 bases’’ (e.g., GAGGAA), or ‘‘Complex’’ (3+ unique bases, e.g., ‘‘UGGAGU’’).

Determination of Bipartite Motifs
Enrichments were computed for all pairs of the top 10 enriched 3-mers, with a spacer of length i = 0-10 (in total: 10*10*(i+1) combi-

nations), where the enrichment was defined as the fraction of pull-down reads with amotif relative to the fraction of input reads with a

motif. The enrichment for each spacing was computed as the mean enrichment of the 10 most enriched combinations of that partic-

ular spacing (Figures 5A and 5B). Nucleotide composition of the spacer (as shown in Figures 5A and 5B) was the mean nucleotide

frequency across positions between both motif cores, relative to the corresponding nucleotide frequency between the same motif

cores in the input libraries. Preference for spacing (Figure S5B) was computed as the change in the mean enrichment for the top

10 spaced combinations (i > 0) relative to the mean enrichment of the top 10 non-spaced combinations (i = 0, i.e., top 10 6-mers):

log2(enrichmentspaced/enrichmentlinear). Significance was determined by setting a False Discovery Rate (FDR) using 0 nM control li-

braries as follows: samples of 10 3-mer cores were repeatedly drawn and the observed relative enrichments were used to set an FDR

at each spacing i. Motif cores were sampled such that the relationships between sampled 3-mers were the same as the relationship

observed for that particular protein’s enriched cores.

Assessment of Flanking Nucleotide Compositional Preferences
For a given RBP, we only considered (protein-bound and input) reads that: a) contained one of the top 5 enriched 5-mers; b)

contained no additional secondary motifs, where secondary motifs were the top 50 enriched 5-mers or all 5-mers with an

R valueR 2, whichever set was larger. The remaining protein-bound and input reads were then subsampled tomatch the distribution

of motifs and the positions of those motifs along a read. These reads were further subsampled to match the distribution of mean

base-pairing probabilities over the motif (bins used were [0-0.1),[0.1-0.2),.,[0.9,1.0]). For the analysis in Figure S5C, protein-bound

and input reads were instead subsetted only to reads where the motif was in a hairpin configuration (H5 in the MFE). The flanking
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nucleotide enrichment was then determined by centering these reads on the motif and computing the relative enrichment

(log2(fpull-downNT / finputNT)) for each nucleotide at each position relative to the motif. We excluded the two nucleotides immediately

adjacent to themotif on either side (to avoid capturing the extension of a coremotif) as well as the first and last position of the random

region in order to avoid certain nucleotide biases that can occur due to the presence of adaptor sequences. The overall enrichment

(Figure 5G) is the mean enrichment across all assessed positions, with significance assessed by a Wilcoxon rank-sum test.

Binding to mono- or dinucleotide rich sequence (e.g., Figure S5E) in absence of a motif was done analogously, except only using

reads that did not contain any of the top 50 5-mers or any 5-mer with RR 2. Enrichments for degenerate patterns were calculated as

themean of the 10 best degenerate k-mersmatching that pattern (e.g., mean of top 10/4096 12-mersmatchingCCNNNCCNNNCC in

the example in Figures 5H and S5H). We first calculated enrichments for patterns where the fixed positions (e.g., CCCCCC in the

previous example) contained only one or two nucleotides to assess which RBPs were biased toward binding to degenerate nucle-

otide-rich sequences, but later performed exhaustive searches where the fixed k-mer was allowed to cover the entire sequence

space (i.e., 4096 possible sequences in fixed positions 3 210 = (10 choose 4) patterns with 6 fixed positions and 6 internal Ns).

Filter Binding Assay
Custom RNA oligonucleotides were synthesized by IDT (Integrated DNA Technologies) and RBPs were purified as described earlier

(see Cloning of RNA binding protein domains). RNA was end-labeled with 32P by incubating with Polynucleotide Kinase (NEB) ac-

cording to manufacturer protocol. The assay was done following the protocol described in (Rio, 2012) for use with a 96-well dot-

blot apparatus (Biorad). RBP and radio-labeled RNA were incubated in 50 uL binding buffer (100 mM KCl, 1mM DTT, 10% glycerol,

20 mM Tris) for 1 hr at room temperature. Final concentration of RNA was 1nM and protein concentration ranged from 100pM-10uM

depending on the protein.

Calculation of Feature-Specific R Values and Relative Entropy of Context Features
Feature-specificR values were calculated by assigning all 6-mers into their respective bin for the feature under consideration for both

the pull-down and input libraries, converting the counts into frequencies within each bin for both libraries, and computing the R value

for the 6-mer under consideration using the pull-down and input bin frequencies.

For Figure 6B, bins used to compute feature-specific R values for each feature were the following:

Ppaired: bin 1 = 0-0.2; bin 2 = 0.2-0.4; bin 3 = 0.4-0.6; bin 4 = 0.6-0.8; bin 5 = 0.8-1.0

Pflank: bin 1 = 0-0.3; bin 2 = 0.3-0.45; bin 3 = 0.45-0.6; bin 4 = 0.6-0.75; bin 5 = 0.75-1.0

Core spacing: bin 1 = 0 nt spacing; bin 2 = 1 nt spacing;. ; bin 11 = 10 nt spacing, where the spacing corresponds to the spacing

between the two cores of a bipartite motif.

Nucleotide context: 16 bins, where the first four bins are quartiles of the percentage of A content flanking a 6-mer based on the

composition of input reads (bins 5-8, 9-12, and 13-16 are analogous for C, G, and U content, respectively). Each 6-mer occurrence

was therefore counted 4 times, into the corresponding bin for each of the four nucleotides.

Feature-specific R values within each bin were compared to the overallR value of the 6-mer without binning (i.e., log2(Rbin/Roriginal))

to create the feature-specific enrichment profile for a particular context feature (example for Ppaired for two RBPs in Figure S6B).

For Figure 6C, RNA folding was done as described above. To determine the log2 ratio of base-pairing probabilities, control U5 oc-

currenceswere determined as previously described for each datatype (RBNS reads, eCLIP peaks, control exons in knockdown data).

Log2 Ppaired ratios were then bootstrapped from the Ppaired distributions in pull-down relative to input for each datatype, with signif-

icance assessed by a Wilcoxon test.

DATA AND SOFTWARE AVAILABILITY

The accession number for the eCLIP for CELF1 data reported in this paper is GEO: GSE107768. See also Data Access and RBNS

Data Processing sections above.
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