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We systematically generated large-scale data sets to improve genome annotation for the nematode
Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling
across a developmental time course, genome-wide identification of transcription factor–binding
sites, and maps of chromatin organization. From this, we created more complete and accurate
gene models, including alternative splice forms and candidate noncoding RNAs. We constructed
hierarchical networks of transcription factor–binding and microRNA interactions and discovered
chromosomal locations bound by an unusually large number of transcription factors. Different
patterns of chromatin composition and histone modification were revealed between chromosome
arms and centers, with similarly prominent differences between autosomes and the X chromosome.
Integrating data types, we built statistical models relating chromatin, transcription factor binding, and
gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.

Complete genome sequences provide a
view of the full instruction set of an or-
ganism. However, understanding the

functional content of a genome requires more
than DNA sequence. To address this need, in
2003 the U.S. National Human Genome Re-
search Institute (NHGRI) initiated the Encyclo-
pedia of DNA Elements (ENCODE) project in
order to study the human genome in greater depth
(1). Recognizing the importance of well-annotated
model genomes, in 2007 the NHGRI initiated
the model organism ENCODE (modENCODE)
project on Caenorhabditis elegans and Drosoph-

ila melanogaster so as to systematically annotate
the functional genomic elements in these orga-
nisms (2).

Given its intermediate complexity between
single-celled eukaryotes and mammals, C. elegans
offers an outstanding system for studies of ge-
nome organization and function. C. elegans was
the first multicellular organism with a fully de-
fined cell lineage, a nervous system reconstructed
through serial-section electron microscopy, and
a sequenced genome (3–5). Its 100.3-Mb genome
is only about eight times larger than that of S.
cerevisiae, and yet it contains almost as many

genes as a human and all of the information
necessary to specify the major tissues and cell
types of metazoans.

From the project start in 2007 (2), the C.
elegans modENCODE groups had by February
2010 collected 237 genome-wide data sets (table
S1) bearing on gene structure, RNA expression
profiling, chromatin structure and regulation, and
evolutionary conservation. To ensure the complete-
ness and standardization of modENCODE data,
all data sets were submitted to the modENCODE
Data Coordinating Center; hand curated with ex-
tensive, structured metadata; validated for com-
pleteness; and checked for consistency before
release at www.modencode.org.

Analyses of these data reveal (i) directly sup-
ported protein-coding genes containing 5′ and 3′
ends and alternative splice junctions; (ii) sets of
noncoding RNAs, including RNAs belonging to
known classes and previously unknown types; (iii)
gene expression and transcription factor (TF)–
binding profiles across developmental stages; (iv)
genomic locations bound by many of the TFs
analyzed, designated as HOT (high-occupancy
target) regions; (v) a hierarchy of candidate regu-
latory interactions among TFs and its relationship
to the network of microRNAs (miRNAs) and their
targets; (vi) differences in histone modifications
and nuclear-envelope interactions between the
centers and arms of autosomes and between auto-
somes and the X chromosome; (vii) evidence
for chromatin-mediated epigenetic transmission
of the memory of gene expression from adult
germ cells to embryos; and (viii) predictive mod-
els that relate chromatin state to TF-binding sites
and to expression levels of protein- and miRNA-
encoding genes.

The summation of features annotated through
these functional data sets provides a potential
explanation for most of the conserved sequences
in the C. elegans genome and lays the foundation
for further study of how the genome of a multi-
cellular organism accurately directs development
and maintains homeostasis.

The Transcriptome
Accurate and comprehensive annotation of all
RNA transcripts (the transcriptome) provides a
framework for interpreting other genomic features,
such as TF-binding sites and chromatin marks.
At the project’s inception [WS170; WormBase
versions used for specific analyses can be found
in (6)], the C. elegans genome lacked direct ex-
perimental support for about one third of pre-
dicted splice junctions, and some of these
predictions were erroneous (7, 8). Many genes
lacked transcript start sites and polyadenylate
[poly(A)] addition sites; exons and even whole
genes were missing. To address these deficiencies,
cDNA-based evidence was obtained through high-
throughput sequencing (RNA-seq), reverse tran-
scription polymerase chain reaction (RT-PCR)/
rapid amplification of cDNA ends (RACE), and
tiling arrays from a variety of stages, conditions,
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and tissues (tables S1, S3, and S4). Analysis of
the data yielded previously unrecognized protein-
coding genes, refined the structure of known
protein-coding genes, revealed the dynamics of
expression and alternative splicing, provided evi-
dence of pseudogene transcription, and suggested
previously unknown noncoding RNAs (ncRNAs).
Through mass spectrometry, we verified pre-
dicted proteins and distinguished short single-
exon protein-coding transcripts from ncRNAs.

Protein-coding genes. We used RNA-seq to
generate more than 1 billion uniquely aligned
short sequence reads from 19 different nematode
populations, including all major developmental
stages (embryonic, larval, dauer, and adult), em-
bryonic and late L4 males, animals exposed to
pathogens, and selected mutants (fig. S3) (9, 10).
Data sets targeting the 3′ ends of poly(A)-plus
transcripts were also collected, and additional
sequence tags representing polyadenylated 3′
ends that were acquired by using 3P-Seq [poly(A)-
position profiling by sequencing] were made
available to the consortium (11, 12).

RNA-seq reads were mapped exhaustively
and, together with the 3P-Seq data, allowed us
to detect with nucleotide resolution features of
protein-coding genes independently of previous
WormBase models (fig. S7). The number of con-
firmed splice junctions increased from 70,028 at
project start to 111,786, with 8174 of these not
previously represented in WormBase (Fig. 1A
and fig. S8). The number of genes with a trans-
spliced leader (either Spliced Leader 1 or 2) at
the 5′ end increased from 6012 to 12,413,
covering 20,515 different trans-spliced transcript
start sites (TSSs), and the number of poly(A)
sites associated with genes increased from 1330
to 28,199 (table S2A) (13). RT-PCR/RACE and
mass spectrometry provided direct support for
40,114 splice junctions (6). About 95% of these

overlapped with those detected with RNA-seq,
providing independent support for 37,830 of
these features (fig. S9). In addition, mass spec-
trometry proved that of 359 tested, 73 single-
exon genes produced protein.

We used several avenues to estimate how
many features of protein-coding genes remain
to be supported in C. elegans. Of predicted
WormBase transcripts, only 1108 (5%) do not
have support through RNA-seq (table S2B). Of
these, 369 are members of rapidly evolving gene
families implicated in environmental response
and may be nonfunctional or only expressed un-
der specific conditions. The yield of new features
discovered with additional RNA-seq samples is
clearly diminishing, and features such as newly
discovered exons are approaching saturation
(fig. S10). Intersection of the data sets produced
here with previous evidence from WormBase
suggests as few as 2000 to 3000 exons (2 to 3%)
remain undetected (fig. S10). However, we con-
tinue to detect rare splice-junction and spliced-
leader events, particularly those associated with
more abundantly expressed genes. These could
be biologically important but might also result
from RNA-processing errors.

Gene models.We built probable gene models
from the results of transcript sequencing, allow-
ing for multiple transcripts (isoforms) from a
given region (10). These models, called genelets
because they could be fragments of full genes,
were initiated with the most highly represented
splice junction in a region and extended in each
direction so as to incorporate regions covered
by above-threshold sequence reads and splice
junctions (6). The model was terminated when
either a transcript start or stop signal was encoun-
tered or when coverage was interrupted (fig. S5).
By iterating the process, we generated alternative
isoforms. We used the longest open reading frame

to annotate protein-coding sequences (CDSs) and
5′ and 3′ untranslated regions (UTRs).

For each of the 19 stages and conditions, we
built transcript sets purely on the basis of RNA-seq
data from a given stage (stage-specific RNA-seq–
only genelets), along with three aggregate sets:
(i) aggregate RNA-seq–only genelets; (ii) aggre-
gate integrated genelets, which combined RNA-
seq data with available ESTs (expressed sequence
tags), cDNAs, and OSTs (open reading-frame
sequence tags) (7, 8, 11), as well as the RT-PCR/
RACE and mass spectrometry data produced in
the project; and (iii) aggregate integrated tran-
scripts, which incorporates all evidence from
“(ii)” above and allows WormBase predictions
to fill small coverage gaps within exons. The last
set incorporates all of the splice junctions and
spliced-leader sites, as well as multiple poly(A)
addition sites, and thus often contains multiple
isoforms. Altogether, we generated 64,824 tran-
scripts from 21,733 genes, as compared with
23,710 transcripts from 20,082 genes in WormBase
at the project start. Our gene models, which
come from direct experimental evidence, exactly
match the internal splice junction pattern for
10,123 WormBase transcripts, but we provide
revised 5′- or 3′UTRs for many of these. For 6418
models, the internal gene structure was unchanged
from WormBase, but new 5′ or 3′ exons and as-
sociated splice junctions were added. The re-
maining fall into three categories: Our models
overlap WormBase transcripts but differ in splice
junctions (3292); they fail to cover all of the splice
junctions (2235); or they are not represented in
WormBase at all (1952).

Expression dynamics. To determine the dy-
namics of gene expression during development
and in specific cell types, we analyzed tiling ar-
ray data from 42 biological samples, comprising
17 different growth stages and conditions from
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whole animals, and 25 samples from different
isolated cell and tissue types (table S3) (6). For
almost all whole-animal samples, RNA-seq data
were also obtained from the same or similarly
prepared samples. Calibration and processing
were done to facilitate the integration of se-
quencing and arrays for both RNA-seq and for
chromatin immunoprecipitation (ChIP) followed
by high-throughput sequencing (ChIP-seq), al-
lowing them to be used for a merged data set
(figs. S1, S2, and S4) (6, 14). Overall, we found
that only a small number of genes (~100 per
stage) showed strong stage-specific expression in
the whole-animal samples, but fewer than half
of the genes were detectably expressed in all
stages by means of RNA-seq, and tiling arrays
suggest that >75% of genes show a greater than
twofold range of expression across all the tis-
sues (figs. S11 and S12) (15).

To investigate the relationship between gene
expression and developmental stages in greater
detail, we correlated the RNA-seq expression pro-

files at a given stage with all other stages. For
simplicity, we focused on a set of 8428 genes with
non-overlapping transcripts and found that pro-
files over the time course cluster into distinct em-
bryo and larval phases (Fig. 2A) (6). This division
was consistent with a principal-components anal-
ysis on the tiling-array data from matched tis-
sues from embryo and L2 (Fig. 2C) (6). The RNA
for the embryos and larvae was isolated through
different procedures, but on the basis of a num-
ber of controls and comparisons these differ-
ences are unlikely to confound the analysis (6).

Alternative splicing. Alternative mRNA pro-
cessing, including selection of alternative splice
junctions, promoters, or poly(A) addition signals,
provides another mechanism for differential tran-
script generation. To discover prominent stage-
specific alternative isoforms among the aggregate
integrated transcript models, we identified genes
with two or more isoforms whose abundance
changed more than fivefold during development;
differential splice junction usage ranged from

simple alternative exons to more complicated pat-
terns, such as splicing or retention of an entire series
of introns in different stages (Fig. 1C and fig. S6).

We also developed algorithms that infer quan-
titative transcript-level expression by distribut-
ing sequence reads among alternative isoforms
in a probabilistic manner (6). Pairwise compari-
sons of staged samples showed that overall, iso-
form usage does not change dramatically between
stages: Of 12,875 genes with multiple isoforms,
280 on average switch isoform usage between
any two stages, totaling 1324 genes with switch-
ing (Fig. 1B and fig. S14) (6). Using a different
approach, we grouped transcript-level expression
profiles across many stages into 48 distinct clus-
ters (figs. S15 and S16). We identified 1320 genes
for which one isoform fell into a separate cluster
from all the others and then classified these
according to the type of processing events that
distinguish them (figs. S17 and S18) (6). These
analyses illustrate the range of alternative mRNA
processing that takes place during development.
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Fig. 1. Transcriptome features and alternative splicing. (A) Bar graphs indicate
the number of confirmed splice junctions categorized by type. The leftmost bars
show the progression from project start (6) to the aggregate integrated tran-
script set. The three other groups provide data for the various developmental
stages, males, mutants, and populations exposed to pathogens. Specific sample
names are described in table S3. (B) Histogram of fractional differences in
isoform composition for 12,875 genes with multiple isoforms in 21 pair-wise

comparisons across seven developmental stages. A fractional difference close to
1 indicates large differences in the relative composition. (C) Representative
example (F01G12.5; let-2), illustrating alternative exon usage across stages.
(D) Example of a differentially transcribed pseudogene creating a ncRNA. Rows
are normalized signal tracks for the various developmental stages, showing the
expression pattern of the parent gene (T01B11.7.1; orange) and an associated
duplicated pseudogene (PP00501, green).
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Pseudogenes. Several gene models derived
from RNA-seq fell in regions previously anno-
tated as pseudogenes. Pseudogenes are DNA se-
quences similar to protein-coding genes that are
generally thought not to produce functioning pro-
teins (16). However, some pseudogenes are tran-
scribed and may potentially act as endo-siRNA
(endogenous small-interfering RNA) regulators
of their parent genes (17). Using computational
methods, we identified 1293 probable pseudo-
genes in the C. elegans genome, adding 173 to
and removing 213 from the previous annotation
set (WS170), and established the probable source
(parent) gene for 1198 of them (fig. S19) (6).
Using RNA-seq data, we found evidence of tran-
scription for 323 pseudogenes (6). For 191 of
the 323, we determined that the transcription was
clearly independent of the parent gene, ruling out
potential mismapping artifacts. Of these 191, 104
had a discordant expression pattern across stages
relative to the parent (Fig. 1D), and 87 were greater
than two times more expressed than the parent (6).
Intriguingly, 17 of the transcribed pseudogenes
have a unique peptide match through mass spec-
trometry, suggesting that they are translated and
may create novel short peptides.

ncRNAs. The genome produces a variety of
transcripts that do not code for proteins but in-
stead function directly as noncoding RNA
(ncRNA). At the start of the project, there were
1061 known ncRNAs in C. elegans (table S5).
These include small nucleolar RNAs (snoRNAs),
RNAs involved in mRNA translation and splicing
[such as ribosomal RNAs (rRNAs) and tRNAs],
miRNAs, piwi-associated RNAs (piRNAs, called
21U-RNAs in C. elegans), and multiple classes
of endo-siRNAs (18).

To provide a more comprehensive annotation
of small ncRNAs, we profiled small-RNA gene
expression using RNA-seq on size-fractionated
total RNA. In particular, using 81 million aligned

reads from 11 different stages enabled us to iden-
tify 154 out of 174 previously annotated miRNA
genes (19, 20). Most of these are products of the
canonical Drosha-Dicer cleavage pathway. How-
ever, four are mirtrons—miRNAs for which the
precursor hairpins are generated directly by intron
splicing (21). Our computational and experimen-
tal analysis validated 13 previously unidentified
mirtrons (6, 22). Small-RNA data also defined
102 additional candidate canonical miRNAs and
thousands of 21U-RNAs, although these latter
were from previously identified loci (6, 19, 23).

To identify other candidate ncRNAs, partic-
ularly ones longer than those discussed above,
we combined all the transcriptome data sets to
integrate both tiling-array and RNA-seq data.
We found that in comparison to other genomic
“elements” (such as well-curated CDSs, UTRs,
or intergenic regions), the known ncRNAs tend
to have a higher small RNA-seq signal and very
little poly(A)-plus RNA-seq signal. However, no
single transcriptome feature was able to reliably
distinguish them (fig. S21A) (24). Therefore, we
developed a multivariate machine-learning mod-
el combining all the transcriptome data sets and
found support for 21,521 previously unknown
ncRNAs (4.3 Mb in total), which we call the 21k-
set of ncRNAs (tables S6 to S8 and fig. S20) (6).

Because identifying ncRNAs by using tiling
arrays can be problematic (14), we added con-
servation and RNA secondary structure to our
model. However, doing so restricted the predic-
tions of this second model to only the ~15% of
the C. elegans genome that was readily alignable
to C. briggsae. Overall, the second model pre-
dicted 7237 previously unidentified ncRNA can-
didates (the 7k-set, comprising 1.0 Mb), with an
estimated positive-predictive value of 91% (from
testing against an independent validation set of
known ncRNAs) (24). Of these, 1678 ncRNA
candidates (181 kb) fell in intergenic regions,

with the remainder in introns, pseudogenes, or
regions antisense to exons (fig. S21B). We tested
a number of these intergenic candidates to vali-
date expression: RT-PCR detected RNA products
for 14 of 15, and Northern blots detected expres-
sion for three of five (24).

The 7k-set contains many RNA structural mo-
tifs, including some not found in known RNA
secondary structure families (24). Additionally,
these ncRNA candidates tend to be differen-
tially expressed across development (24), with
many preferentially expressed in the embryo.
Comparing the expression profiles of the 7k-set
with those of well-characterized genes allowed
us to identify putative functions for some can-
didate ncRNAs (table S9) (6). Lastly, in com-
paring the 7k and 21k sets of ncRNAs the
overlap was small, with just 1259 overlaps. Thus,
when conservation and structure were consi-
dered we detected candidate ncRNAs not found
from the expression data alone; conversely, many
previously uncharacterized transcripts in C. elegans
may occur in nonconserved parts of the genome.
Thus, the 7k and 21k sets provide comple-
mentary types of ncRNA candidates for further
study.

In summary, the improved annotation of tran-
scribed portions of the genome from these data
sets provides the community with new sub-
strates for further experimentation. However,
gaps remain in some transcript models, some
protein-coding genes remain to be discovered,
and direct evidence is needed to support the can-
didate ncRNAs.

Regulatory Sites and Interactions
Accurate annotation of sites bound by TFs is
central to understanding the regulatory networks
underlying development and homeostasis. How-
ever, at the start of the project very few TF-binding
sites had been annotated in the nematode ge-

Fig. 2. Expression and
binding dynamics. (A)
Spearman correlations of
gene expression and RNA
Pol II binding across sev-
en stages. Expression-
level correlations are shown
above the diagonal; RNA
Pol II–binding correla-
tions appear below. For
both expression and bind-
ing, there is a notable
transition between em-
bryonic and larval stages.
(B) Correlation of RNA Pol
II–binding levels with gene
expression. Although RNA

Pol II–binding in embryonic stages shows low correlation with gene expression in larval and
young adult stages, expression in the embryo correlates moderately well with RNA Pol II–
binding later. (C) Principal components analysis (PCA) of six matched tissue samples from mixed
embryo (MxE) and L2 (7). GABA, g-aminobutyric acid.
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nome, in part because of a lack of suitable meth-
ods with which to assay binding sites in whole
animals (25). We developed these methods
and have applied them to map the binding sites
for 23 green fluorescent protein (GFP)–tagged
fusion proteins and RNA polymerase II (RNA
Pol II) using ChIP-seq (table S10) (6, 26). Most
factors were assayed at their stage of highest ex-
pression, but both PHA-4 (a well-studied factor
required for pharyngeal development) and RNA
Pol II were analyzed at six developmental stages.
Some of the factors were expressed in as few
as 10% of the cells in the whole animal.

TF-binding sites, motifs, and targets. Bind-
ing sites were identified by first finding relative-
ly broad regions of enrichment and then, for some
analyses, refining these to narrow [≤200 base
pairs (bp)] peak summits (figs. S24 and S46).
Most TF-binding sites defined by means of ChIP-
seq peaks for protein-coding genes lie within
500 bp upstream of transcript start sites. Binding
sites assigned to known ncRNAs are even closer
to the 5′ end of the transcript (fig. S22C). On the

basis of their proximity to the TSS, we were able
to assign most sites to specific protein-coding or
known ncRNA genes, creating a set of candi-
date targets for each TF (6); however, some
sites were ambiguously located and remain un-
assigned. Although most factors target both
protein-coding and known ncRNA genes, GEI-
11 preferentially targets ncRNAs (Fig. 3D and
fig. S22, A and B). Analysis of TF-binding sites
adjacent to ncRNA candidates from the 7k-set
showed that 59% are potential targets of the 22
TFs examined, which is significantly more than
would be expected by chance (P < 0.001, derived
from a z score assuming a normal distribution
of random sequences) (6, 24). Pairwise correla-
tion of target genes revealed that factors with
related functions often show substantial over-
lap in their protein-coding gene targets (fig. S23A).
Three homeobox (HOX) genes involved in es-
tablishing the body plan provide particularly
striking examples (mab-5, lin-39, and egl-5)
(26). In contrast, pairwise correlation of targeted
miRNAs shows that the factors bound to them

tend to cluster together more by stage than by
factor type (fig. S23B), which is consistent with
observations that expression of miRNAs tends
to show strong stage-specific enrichment (19).

To further characterize TF-binding sites, we
searched for 8- to 12-bp cis-regulatory motifs
within the ChIP-seq peaks (6) and found strong
motifs for eight TFs (BLMP-1, CEH-14, CEH-30,
EGL-5, HLH-1, LIN-39, NHR-6, and PHA-4)
(fig. S35). Two of these are similar to previously
described motifs (PHA-4 and HLH-1).

The binding sites (defined from narrow peaks)
cover a total of 5,165,949 bp (5.2% of the ge-
nome) and target 8859 protein-coding genes, as
well as 652 known ncRNAs, indicating that each
gene may have sites for many factors.

Clustered binding in HOT regions. We iden-
tified 304 short binding regions (average length
of ~400 bp) that were significantly enriched (q
value < 1e-5) in most TF ChIP-seq experiments
despite the fact that the 22 analyzed factors have
diverse functions and expression patterns. These
regions, which we term HOT regions, were bound

Fig. 3. Integrated miRNA-TF regulatory network. (A) TFs are organized hierar-
chically, and those miRNAs either regulating or being regulated by the TFs are
shown. (TF names are in fig S36.) All larval TF-TF interactions in HOT regions
were removed. Tissue specificity and number of protein-protein interactions are
shown for each of the hierarchical levels (6). (B) TF network after filtering out
edges that do not show a significant correlation in their expression patterns.

Also shown is a schematic representation of the target genes of the 18 larval
TFs. (C) One of the three significantly enriched network motifs (other two are in
fig. S37). (D) Enrichment of binding targets and signal of TFs in noncoding
versus coding genes. Max signal equals the ratio of maximum binding signal of
a TF at noncoding versus coding genes. Target fraction represents the ratio of
target percentage in noncoding genes to that in coding genes (fig. S22A).
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by 15 or more factors (Fig. 4, A and B, and fig.
S25A) (6). Control experiments revealed that
these regions are not enriched in input DNA, nor
do they appear in control ChIPs from strains lack-
ing GFP-tagged TFs (fig. S26) (6). The number of
factors bound to HOT regions was relatively in-
sensitive to the width of the peaks used to identify
them because peak summits occur within 100 bp
for over 80% of HOT regions (fig. S25B) (6).

In addition to the HOT regions, most TFs
also cross-link to “factor-specific” DNA regions
(bound by one to four total factors) (Fig. 4A).
Using HLH-1, a typical factor with both known
tissue specificity and a known binding motif, we
compared these two different classes of sites
(HOT and factor-specific) for functional dif-
ferences. HLH-1 drives muscle development in
C. elegans (27) and is associated with 598 factor-
specific and 165 HOT regions. Relative to HOT
regions, factor-specific HLH-1 ChIP-seq regions
were over twofold enriched for the HLH-1–
binding motif (Fisher’s exact test, P < 0.0001)
(28), and genes associated with these regions
were more than ninefold enriched for muscle-
specific expression (Fisher’s exact test, P < 0.01)

(fig. S27, A and C) (29). Similar enrichment for
motifs and tissue-specific expression of targets
was also observed for other TFs when factor-
specific sites were compared with HOT regions
(fig. S27B) (6), suggesting that factor-specific
and HOT regions are functionally distinct.

Genes associated with HOT regions are dis-
tinguished by several other measures. HOT-region
genes assayed for expression at the individual-
cell level in L1 larvae are expressed in most or
all cell types, whereas other genes mostly showed
tissue-specific expression (Fig. 4C and fig. S29)
(30). Genes associated with HOT regions were
also expressed at higher levels in whole-animal
and tissue-enriched measurements and were less
likely to be stage-specific (fig. S28) (6). Com-
pared with 3% of genes associated with factor-
specific regions, 21% of the HOT region–
associated genes are essential (P < 1e-40; c2 test)
(fig. S27C) (6, 31). Gene Ontology (GO) (32)
analysis revealed a variety of biological pro-
cesses highly represented in HOT-associated
genes, including growth, reproduction, and larval
and embryonic development (each P < 1e-15), as
well as 19 ribosomal protein genes (>12×

enrichment, P < 1e-12) (table S11). In compar-
ison, GO analysis of the remaining (non-HOT)
targeted genes identified functional terms that
are consistent with the known tissue specificity
and function of the individual TFs (26).

Extensive overlap in binding sites between
TFs with disparate functions has previously been
observed in both limited (33) as well as whole-
genome ChIP-chip experiments (34, 35). Using
ChIP-seq data, we have shown that hundreds of
regions in C. elegans are bound by the majority
of TFs within a 100-bp window. Our results sug-
gest that many TFs that are cross-linked to HOT
regions are not directly associated with DNA via
specific binding, which is consistent with findings
for highly occupied regions in Drosophila (34).
Rather, they suggest that association with HOT
regions may be driven by protein-protein interac-
tions to a currently unknown set of HOT region–
associated DNA-binding factors. We searched for
sequence motifs that might be broadly associated
with HOT regions and found a few that were
significantly enriched (fig. S35), but the protein
factors that bind directly to these motifs are
currently unknown.

Fig. 4. HOT regions. (A)
TF-binding peaks at a HOT
region and two “factor-
specific regions” on chro-
mosome III: 7,206,000
to 7,220,000. Top tracks
show read density (scaled
based on the total mapped
reads) from 22 ChIP-seq
experiments. Bottom tracks
show ChIP-seq controls,
RNA-seq expression lev-
els, and ChIP-chip signals
for two histone modifica-
tions. (B) 304 HOT regions
bound by 15 or more
factors and 50 randomly
chosen TF-bound regions.
Each row represents a TF,
and each region is colored
by enrichment q value (6).
(C) Genes associated with
HOT regions are broadly
expressed. Single-cell gene
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Building a TF hierarchy. Following the
assignment of binding sites to target genes,
we investigated the resulting “binding network,”
as had previously been done in yeast and
Escherichia coli (36). The network for 18 fac-
tors assayed in larval stages (Fig. 3, A and B,
and fig. S36) is relatively dense, with each TF
bound to an average of 828 genes, including
TFs and other gene targets. We pruned the
network to the strongest interactions, using the
fact that the expression profile of a TF tends to
be more strongly correlated over the time course
with that of its targets than nontargets, being
positive for activators and negative for repres-
sors (table S12) (6). The pruned network shows
a high level of autoregulation among the factors.

Within the network, we organized TFs hier-
archically according to the degree to which they
target other TFs (top of the hierarchy) or are
themselves targets for other TFs (bottom) (37).
We observed clear differences between the TFs
at each level (Fig. 3, A and B). TFs at the lower
levels tended to be more uniformly expressed
across multiple tissues (P = 0.07, Student’s t
test) (6). Consistent with this, TFs at the bottom
level were essential more often than those at
the top. In contrast, members of the Hox family
were more often at the top of the hierarchy—
among the six Hox TFs examined, four were at
the top layer of nine TFs—perhaps reflecting
their role in modulating specific developmental
processes across multiple tissues. Lastly, TFs
showed connectivity in the existing C. elegans
protein-protein interaction network so that those
at the hierarchy top tended to have significantly
fewer protein-protein interactions than those be-
low (P = 0.002, Student’s t test) (38). This sug-
gests that TFs in the middle and bottom layers act
as “mediators” or “effectors,” more likely to ex-
change information with other proteins. Although
the predicted larval-stage TF network here is
small and one cannot make strong statistical state-
ments, these conclusions follow a pattern that is
consistent with regulatory hierarchies in yeast and
E. coli, in which essential and highly connected
“workhorse” regulators tend to occupy lower levels
whereas overall modulators are on the top (37).

An integrated miRNA-TF network and its mo-
tifs. Next, we added miRNAs to our TF hierarchy
in order to enable us to explore the interplay
between transcriptional and posttranscriptional
regulation. In particular, we identified the targets
of miRNAs on the basis of annotated 3′UTRs
and sequence conservation (table S13) (6). We
then constructed an integrated network between
miRNAs expressed during larval stages and the
above 18 TFs (all assayed in the same stages).
For simplicity in this network, we describe con-
nections between two entities as “A regulates
B”—though more properly, we should describe
them as “A is predicted to bind near B and reg-
ulate it.” In the integrated network, the level of a
miRNA was assigned according to the highest-
level TF it regulates or, if it does not regulate a
TF, the lowest-level TF that regulates it. The

miRNAs fall into distinct levels, paralleling the
arrangement of TFs (Fig. 3A). Moreover, the net-
work reveals two different classes of miRNAs:
those that are more strongly regulated by TFs
versus those that predominantly regulate TFs (Fig.
3A, bottom right versus top left, respectively).

We can further analyze our integrated net-
work in terms of motifs, which is a common ap-
proach used to decompose a complex network
into simple building blocks (36). Many different
types of network motifs exist; as a simple ex-
ample, we observed miRNA-TF loops in our in-
tegrated network, in which a miRNA regulates
a TF and the same TF regulates the miRNA
(39). Of particular interest are patterns that are
overrepresented as compared with randomized,
rewired null models (6). We observed three over-
represented motifs in the integrated miRNA-TF
network (fig. S37) (6). One example is a miRNA-
mediated feed-forward loop, in which a TF reg-
ulates a miRNA and, together with the miRNA,
regulates a target coding gene (Fig. 3C). This
particular motif structure is potentially responsi-
ble for buffering noise and maintaining target
protein homeostasis (40).

RNA Pol II binding and expression. We pro-
filed RNA Pol II and the specific factor PHA-4
in each of the main stages of C. elegans devel-
opment and compared their binding profiles
with the corresponding RNA-seq data. Similar
to the above approach for gene-expression dy-
namics, for RNA Pol II we focused on a set of
8428 genes with non-overlapping transcripts
and used the binding profiles at promoters to
generate correlation matrices between each
stage. We found a similar differential clustering
of the embryonic and larval stages (Fig. 2A).
This embryonic-larval division was also observed
for PHA-4 binding across stages (fig. S30) and
presumably reflects the different transcriptional
programs between embryos and larvae.

Next, we correlated the RNA Pol II–binding
profiles with expression profiles across all the
stages. As expected, the same-stage correlation
was fairly high (0.64 to 0.70) (Fig. 2B) but was
notably lower for embryonic stages than for larval
ones, perhaps reflecting the presence of maternal
transcripts in embryos (6, 41, 42). Unexpected-
ly, we found expression at earlier developmental
stages more tightly correlated with binding at
later stages, rather than RNA Pol II–binding an-
ticipating RNA production (Fig. 2B). Specifi-
cally, the correlation is low initially, reaches a
maximum at the matching stage, and then re-
mains high for later stages. This can be inter-
preted as RNA Pol II binding to genes at the
same developmental stage at which they are ini-
tially expressed, and Pol II then remaining bound
in later stages, even if expression drops. The ini-
tial round of transcription may affect the accessi-
bility of the promoter, which may then remain
unaltered in later stages for nondividing cells.
Alternatively, this result may reflect paused RNA
Pol II at genes with reduced expression at later
stages. We have found several examples of genes

in which RNA Pol II binding remains high in
later stages but gene expression is low [such as
isl-1 and pgp-2 (fig. S31)], which is consistent
with RNA Pol II stalling.

Overall, we have shown how the analysis of
relatively few TFs allows the construction of a
fairly elaborate network. To improve these net-
works in the future, we will need to identify the
precise cells and stages in which the TFs and
miRNAs are expressed.

Chromatin Organization and Its Implications
One modENCODE goal is to identify elements
that control chromosome behavior and regulate
the function of DNA elements. C. elegans chro-
mosomes have several distinctive features. In-
stead of having centromeres embedded in highly
repeated sequences, its chromosomes are holo-
centric, with microtubule attachment sites dis-
tributed along their length. In hermaphrodites
(XX), gene expression from both X chromo-
somes is down-regulated in somatic cells by a
dosage compensation mechanism and so better
match expression in males, which have one X
chromosome (XO) (43). Furthermore, the entire
X chromosome is under-expressed relative to
the autosomes in the germline cells of both her-
maphrodites and males (44). C. elegans auto-
somes have distinct domains—a central region
flanked by two distal “arms” that together com-
prise more than half of the chromosome. Com-
pared with the centers, the arms have higher
meiotic recombination rates, lower gene density,
and higher repeat content (5, 45, 46). Arms are
not as sharply defined on the X chromosome.

Chromosome-scale domains of histone mod-
ification. The distribution of 19 histone modifica-
tions and two key histone variants (C. elegans
homologs of H2A.z and H3.3) revealed striking,
broad domains of histone modification states on
the autosomes, with relatively sharp boundaries
between the central region of each autosome
and the arms (Fig. 5, A to C) (47–49). Mod-
ifications traditionally associated with gene ac-
tivity and euchromatin such as acetylation and
H3K4 and H3K36 methylation are enriched in
the central regions of the chromosomes. In con-
trast, H3K9 mono-, di-, and trimethylation marks
associated with transcriptional repression and
heterochromatin formation are relatively depleted
from the central regions and enriched on the arms
of the autosomes (Fig. 5A). These megabase-
scale chromosomal domains are not homoge-
neous; there are small zones of repressive marks
within the generally active central regions and
active marks within the generally repressed arms.
The chromosome-scale domains of histone mod-
ification do not vary substantially in composi-
tion or position between embryos and L3 larvae.
Despite the biased distribution of repressive
marks, the arms of the chromosomes do not
appear heterochromatic through 4´,6´-diamidino-
2-phenylindole (DAPI) staining or classical band-
ing techniques (50). Although our samples did
not include appreciable meiotic tissue, the broad
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domains of histone modifications correspond
to regions defined by differences in recombi-
nation rate, with the boundaries located at the
recombination rate inflection points (Fig. 5A)
(5, 46). On each chromosome, one arm contains
a meiotic pairing center that mediates homolo-
gous pairing and synapsis (50, 51). As previ-
ously reported, H3K9me3 is more highly enriched
on that arm (Fig. 5A) (52). However, methylation
is not particularly enriched within the pairing
center regions themselves (53). H3K9me3 is also
highly enriched on silent genes on arms, and all
forms of H3K9 methylation are enriched in re-
petitive elements, which are more prevalent on
chromosome arms (fig. S32).

The X chromosome. Gene density, recombi-
nation rates, and repeat content are more uni-
formly distributed along the X chromosome than
autosomes (5). Consistent with this, chromatin
marks on the X are more uniformly distributed.
A high density of repressive marks, similar to
that seen throughout the autosome arms, is as-
sociated with only two narrow ~300-kb regions
at the left end of the X that flank the meiotic
pairing center (Fig. 5B). The genomic distribu-
tion of DPY-26, DPY-27, DPY-28, and SDC-3,
proteins mediating dosage compensation, is
highly enriched on the X chromosome (Fig.
5B) (25, 54, 55). H4K20me1, a modification
linked in mammals to chromosome maturation

and X-chromosome inactivation (56), is also
enriched on the X. This X-enrichment is detec-
table in early embryo populations, when some
embryos have initiated dosage compensation, and
becomes more pronounced in L3 animals, when
dosage compensation is fully established.

Chromosomes and nuclear envelope interac-
tions. Interactions between the genome and the
nuclear envelope were determined by means
of ChIP of LEM-2, a transmembrane protein
associated with the nuclear lamina (57). In em-
bryos, LEM-2 interacts with the repeat-rich,
H3K9-methylated arms of the autosomes but not
with the autosome centers (Fig. 5, A and D).
Similar to H3K9 methylation, the transition be-
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Fig. 5. Chromosome-scale domains of chromatin organization. (A and B)
Whole-genome ChIP-chip data for various histone modifications and chromatin-
associated proteins, along with relevant genome annotations, were normalized,
placed into 10-kb bins, and displayed as a heat map. Red indicates a stronger
signal, and blue indicates a weaker signal. The continuous black line plots the
relationship between physical (x axis) and genetic (y axis) distance. Three major
groups were identified by hierarchical clustering. Group 1 contains H3K9 meth-
ylation marks and LEM-2, which tend to be enriched at distal autosomal
regions, and correlate with repetitive DNA and a high recombination rate.

Group 2 contains dosage compensation complex members and H4K20me1,
which are highly enriched on X. Group 3 contains marks associated with active
chromatin. Generally, signals for active marks are weaker on the X chromo-
some than the autosomes. This megabase-scale chromatin organization persists
through all stages examined. (A) Chromosome III is representative of autosomes.
(B) X has a distinct chromatin configuration. (C) H3K9me1, - 2, and -3 signals
decrease gradually at the boundaries between the central and distal domains,
whereas the boundaries defined by LEM-2 are relatively sharp. (D) A schematic
representation of key findings.
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tween LEM-2–enriched arms and the central
chromosomal regions is relatively sharp, coincid-
ing with the transition between regions of high
and low meiotic recombination rate (Fig. 5B).
Within the arm regions, LEM-2 enrichment ex-
hibits a complex underlying subdomain structure
(57). On the X chromosome, LEM-2 interacts
with only the small regions on the left end that
harbor repressive chromatin marks (Fig. 5B).
This suggests a particular organization for the X
chromosome within the nucleus (Fig. 5D).

Histone mono-methylation. We plotted the
distribution of each chromatin mark relative to
transcript starts and ends and further subdivided
these plots by the expression level of the asso-
ciated gene on autosomes versus the X chromo-
some (Fig. 6 and fig. S34). Overall, the results
are consistent with the known distributions and
functions of chromatin marks in other eukary-
otes (58). However, the distribution of several
mono-methyl marks—including H4K20me1,
H3K9me1, and H3K27me1—are associated more
with the bodies of highly transcribed genes on
the X chromosome than with similarly expressed
genes on autosomes. Further, H3K36me1 is con-

fined sharply to gene bodies on X, in contrast to
broader enrichment that spans promoters and 3′
UTRs on autosomal genes. Conversely, H3K36me3
and H3K36me2 are more associated with auto-
somal genes than with X-linked ones (Fig. 6 and
fig. S34). Differences in several marks are ob-
served between early embryogenesis and more
differentiated L3 animals—most notably a redis-
tribution of H3K27me1 and H3K27me3 (Fig. 6
and fig. S34, bottom row).

Nucleosome organization. Consistent with mi-
crococcal nuclease (MNase) nucleosome-mapping
experiments (52, 59, 60), both X and autosomal
genes exhibit a typical nucleosome-depleted re-
gion upstream of TSSs, a well-positioned +1 nu-
cleosome, and nucleosome depletion at the 3′
ends. However, we observed that the average nu-
cleosome occupancy immediately upstream of
the +1 nucleosome on the X chromosome was
1.6-fold higher than that of genes on autosomes
(at –300 to +200 bp relative to the TSS; P <
2.2e−16, Wilcoxon rank-sum test) (61). Relative
to autosomal genes, promoters of X-linked genes
have higher GC content, which is predictive of
high nucleosome occupancy in vitro (fig. S33)

(61–63). We observed a similar difference be-
tween X and autosomal promoters when naked
DNA was digested with MNase, although this
result was expected because the known DNA se-
quence preferences of MNase are similar to the
sequence preferences of linker DNA (64, 65).
DNA sequences associated with nucleosome oc-
cupancy evolve according to expression require-
ments (66, 67), suggesting that the higher GC
content on X promoters may relate to mechanisms
of X-specific gene regulation in the soma and
germline.

Epigenetic transmission of chromatin state to
progeny. The activity of the C. elegans protein
MES-4—a histone H3K36 methyltransferase
required for the survival of nascent germ cells
in developing animals—mediates the transmis-
sion of information about the pattern of germ-
line gene expression from mother to progeny.
Similar to other H3K36 methyltransferases,
MES-4 is associated with gene bodies. However,
in contrast to previously studied H3K36 methyl-
transferases (68) MES-4 is able to associate with
genes in an RNA Pol II–independent manner (69).
In the embryo, MES-4 is preferentially bound to
genes that were highly expressed in the maternal
germline but may no longer be expressed in em-
bryos (69). Conversely, MES-4 is not associated
with genes expressed specifically in early em-
bryos, despite recruitment of RNA Pol II to those
genes (69). Therefore, RNA Pol II association
with genes is neither necessary nor sufficient to
recruit MES-4 in embryos (69). These findings
suggest that MES-4, which is required for fer-
tility, functions as a maintenance histone methyl-
transferase and propagates the memory of gene
expression from the maternal germline to the
cells of the next generation (69).

Models relating chromatin to TF binding.
To integrate chromatin with other types of
modENCODE data, we sought to relate the pat-
terns of histone marks with the observed TF-
binding sites. Across the whole genome, we
observed only weak direct correlations between
the two (fig. S38A). However, the relationship
between chromatin and TFs may involve com-
plex, nonlinear relationships. To probe these, we
built machine-learning models to identify TF-
binding peaks from chromatin features (fig. S39).
Investigating the association of individual his-
tone marks with TF-binding sites, we found some
that discriminate TF-binding sites from the ge-
nomic background with reasonable accuracy (Fig.
7A). Often, this is connected with their actual
presence at binding sites; for example, when
comparing the background to binding peaks, on
average, some marks have stronger signals, where-
as others have weaker ones [such as H3K4me3
versus H3K9me3 (fig. S41)]. Individual chroma-
tin marks and RNA Pol II–binding signals could
also distinguish HOT regions from the genomic
background, highlighting the association with ac-
tive transcription in these regions.

Because chromatin features work in combi-
nation to influence binding-site selection (70),
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we combined all the histone marks together in a
classifier. The resulting models could identify bind-
ing sites better than those based on any individual
mark (Fig. 7A and figs. S38B and S40A).

We further observed that chromatin features
are particularly good at identifying the bind-
ing peaks of some specific TFs. For example,
H3K4me2 and H3K4me3, which are usually
enriched in promoters, identified the binding
peaks of a group of five factors (CEH-14, CEH-
30, LIN-13, LIN-15B, and MEP-1) better than
the other TFs. This association is specifically
due to a relative enrichment of these H3K4me2
and H3K4me3 at the binding peaks of this
group of five TFs (fig. S41). It further suggests
that the chromatin features can be useful in
discriminating not only binding sites from the
genomic background but also the sites of
specific TFs in comparison with other TFs.
Indeed, we were able to build integrated models
to do this with reasonable accuracy (fig. S40B).
The same approach was also successful in dis-
criminating HOT regions from all TF-binding re-
gions (fig. S40B). Our models perform best when
chromatin features are measured at the same
stage as the TFs, suggesting a dynamic relation-
ship between chromatin and binding sites across
developmental stages (fig. S42).

To provide additional predictive power, we
incorporated into our models the information
from the specific sequence motif recognized by
a TF, summarized by a position-weight matrix.
The combined models with both chromatin and
sequence information were more accurate than
were models involving either type of information
alone (Fig. 7B and fig. S43). Thus, chromatin fea-
tures enable one to predict TF-accessible regions
and broad classes of binding sites, and motifs pro-
vide additional information on the exact sites bound
by particular factors, chosen from these broad classes.

Models relating chromatin to gene expression.
Next, we developed a model to relate chromatin
marks to gene expression levels. We divided the
regions around each TSS and transcript termi-
nation site (TTS) into small (100 bp) bins and
calculated the average signal of each chromatin
feature and RNA Pol II (13 features in total) in a
set of 160 bins up to 4 kb upstream and
downstream of these two anchors (to include
even long-range effects). Then at each bin, we
correlated the chromatin signals with the stage-
matched gene expression value (Fig. 7C). There
is clear variation across the bins in this correla-
tion, with the effect of making activating marks
more sensitive than are repressive ones to their
exact positioning relative to the TSS or TTS.

By combining all features at each of the 160
bins, we built a model for gene expression, pre-
dicting the quantitative expression levels of tran-
scripts with support vector regression (SVR) (6).
Predicted expression levels were highly correlated
with measured ones [correlation coefficient (r) =
0.75, cross-validated]. As an overall benchmark,
we compared our chromatin model with one
based on the level of RNA Pol II–binding alone
(r = 0.37); our model achieves better prediction
accuracy for expression levels.

To find the relative importance for gene ex-
pression of the 160 possible bin locations, we
divided genes into highly and lowly expressed
classes and predicted the class of each gene from
each bin. The best predictions were obtained from
bins immediately after the TSS and just before
the TTS. With increasing distance upstream of
the TSS, predictive power decreased smoothly.
Intriguingly, the predictive capability of chroma-
tin features extended as much as 4 kb upstream
of the TSS and 4 kb downstream of the TTS,
even when we restricted the analysis to widely
separated genes with distant neighbors. This
may indicate a long-range influence of chroma-
tin on gene expression.

In contrast to protein-coding genes, the asso-
ciation between histone modifications and miRNA

Fig. 7. Statistical models pre-
dicting TF-binding and gene
expression from chromatin fea-
tures. (A) Modeling TF-binding
sites with chromatin features.
The color of each cell represents
the accuracy of a statistical model
in which a chromatin feature or a
set of features acts as predictor
for TF binding or HOT regions. (B)
An example of combining chro-
matin and sequence features.
Potential binding sites of HLH-1
were predicted by using only se-
quence motifs, only chromatin
features, or both. (C) Correlation
pattern for a number of chro-
matin features in 100-bp bins
around the TSS (T 4 kb) and
TTS (T 4 kb) of transcripts at the
early embryo (EE) stage. The
Spearman correlation coeffi-
cient of each chromatin feature
with gene-expression levels
was calculated for each bin. (D)
Chromatin features can predict
expression levels for both protein-
coding genes and miRNAs. (Top)
A model involving all chromatin
features. (Bottom) The model for
protein-coding genes can also be
used to predict accurately miRNA
expression levels.
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expression has not been explored in detail. Be-
cause protein-coding and miRNA genes are both
transcribed by RNA Pol II, we applied the above
chromatin model, derived from protein-coding
genes, to the regions around candidate pre-
miRNAs. We then predicted expression levels
for 162 microRNAs, for which genomic loca-
tions are provided by miRBase (71), and com-
pared these predictions to the measurements in
the modENCODE small RNA-seq data set. We
found a correlation of 0.60 (r = 0.62 for just
miRNAs far from known genes) (Fig. 7D). That
expression of miRNAs can be predicted ac-
curately by using a chromatin model trained on
protein-coding genes is consistent with miRNAs
and protein-coding gene regulation sharing sim-
ilar mechanistic connections to histone marks.

Conservation Analysis
Because mutations are constantly accumulating
over evolutionary time, purifying selection slows
the rate of divergence of functional relative to
nonfunctional sequences (72). For this reason,
evolutionarily constrained regions can assist in
identifying functional elements (73). Although
some functional sequences may not be conserved,
are conserved in a way that we are unable to
detect, or are under positive selection (resulting
in accelerated divergence), the coverage of con-
strained bases by identified functional elements
is a valuable measure of the completeness of our
understanding of the genome. We characterized
regions of the C. elegans genome under evolu-
tionary constraint by constructing a multiple
alignment among the nematodes C. elegans,
C. remanei, C. briggsae, C. brenneri, C. japonica,
and Pristionchus pacificus using methods pre-
viously developed (1). We then calculated con-
servation scores with PhastCons (6, 74). These

procedures identified 59,504 constrained blocks
that cover 29.6% of the C. elegans genome as a
whole and range from 27.4% of chromosome
IV to 31.9% of chromosome X. The single largest
constrained block was 3558 bp on chromosome
V, but conserved blocks were typically much
smaller (mean 49 T 58.6 bp).

These conserved regions are highly corre-
lated with functional elements. We first exam-
ined the proportion of evolutionarily constrained
regions that overlap experimentally annotated
portions of the genome (Fig. 8A and fig. S44).
In the last WormBase freeze before the incorpo-
ration of modENCODE data (6), 50.8% of the
constrained regions were covered by annotations
supported by direct experimental evidence. Ad-
ding modENCODE protein-coding gene evi-
dence increased the coverage of constrained bases
to 58.3%. Other modENCODE increases came
from the 7k-set of ncRNAs (1.9%), TF-binding
sites, (5.9%), dosage compensation (9.3%), and
other chromatin-associated factors (2.8%). Thus,
modENCODE explains an additional 27.4%
(8.1 Mb) of the constrained portion of the ge-
nome; together with remaining unconfirmed
WormBase gene predictions (0.7%) and pseudo-
genes (0.6%), coverage now totals 79.5% of
constrained bases.

We then estimated the extent of constraint on
different functional elements by plotting the dis-
tribution of the PhastCons conservation scores
for each type of element (Fig. 8, B and C, and
fig. S45). The most constrained elements were
ncRNAs (both known and the 7k-set), presumably
reflecting the fact that conservation was a criterion
used to identify them. Next came protein-coding
elements, followed by miRNAs, TF-binding sites,
and other chromatin factor–binding sites. Pseudo-
genes, introns, and regions of the genome not

covered by modENCODE data sets all have low
levels of conservation. We then used the genome
structure correction (GSC) statistic (1, 75) to cal-
culate confidence intervals on the degree of over-
lap between evolutionarily constrained bases and
functional elements defined by modENCODE and
other sources. This demonstrated that coding re-
gions, ncRNAs, TF-binding sites, and other chro-
matin factor–binding sites are significantly more
constrained than would be expected by chance,
whereas regions covered by pseudogenes, introns,
and unannotated regions are significantly depleted
in constrained regions relative to chance.

Roughly 20.5% of the constrained genome
remains uncovered by known functional ele-
ments, but a portion of this sequence directly
abuts known functional elements. If the borders
of transcribed regions and chromatin-associated
protein-binding sites are extended across all con-
strained blocks that neighbor them, ~4.1 Mb
(14%) in isolated constrained blocks remains.
These residual constrained bases are highly en-
riched in introns and intragenic regions (table
S14), are moderately enriched in the 1-kb regions
upstream of TSSs, and are depleted in the 1-kb
regions downstream of TTSs. One potential ex-
planation for the residual constrained bases is that
they correspond to the binding sites of untested
TFs. Indeed, a plot of coverage of constrained se-
quence against numbers of TF experiments shows
that the relatively small numbers of TFs studied
here are far from saturating constrained bases (fig.
S47), implying that additional TFs may explain
part of the remaining constrained bases in these
regions. Other explanations for the residual con-
strained regions include other intronic regulatory
sites, transcribed regions that are expressed only
under rare circumstances, and possibly as-yet
unknown classes of functional elements.

Fig. 8. Relative proportion of annota-
tions among constrained sequences. (A)
Relative proportion of constrained and
unconstrained bases in the C. elegans
genome. Within the constrained re-
gion, the stacked bar chart shows the
cumulative proportion covered by var-
ious classes of annotated genomic ele-
ments. (B) Fraction of element classes
covering (red) constrained and (gray) un-
constrained bases. The error bars show
the 95% confidence interval for ran-
dom placement of elements calculated
with GSC. If the ends of the columns
are outside the confidence interval,
then it is unlikely that the fraction of
the element class overlapping con-
strained and/or unconstrained bases
could have occurred by chance. (C) Con-
straint profiles of broad categories
of elements. The x axis indicates the
PhastCons score of bases covered by
the element ranging from 0 (no con-
servation) to 1.0 (perfect conservation). The y axis indicates the log ratio of the number of bases with the given score covered, relative to what would be
expected by random element placement (dotted line) (fig. S45 shows more detail).
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Discussion
Our analysis illustrates patterns at multiple ge-
nomic scales: individual gene, chromosomal
domain, and whole-chromosome. At the first
scale, in addition to improving annotation of
protein-coding genes, we identified transcribed
pseudogenes and many previously unidentified
ncRNAs, mapped binding sites of TFs, built
regulatory networks, and constructed models
predicting binding location and expression
levels from chromatin marks. On a larger scale,
we found chromosomal domains—characterized
by repressive marks and interactions with the
nuclear envelope on the autosome arms—and
noted how the boundaries in these domains
align with changes in recombination frequency.
We also identified additional properties of the
entire X chromosome, including the preferential
accumulation of multiple mono-methylated his-
tone marks. Our large-scale approach also
discovered unexpected biological phenomena
that would be difficult to uncover in conven-
tional studies. In particular, upon profiling the
binding sites of 23 factors we identified regions
of clustered binding (HOT regions).

One limitation of the modENCODE strategy
is that we cannot readily distinguish low levels
of biochemical noise, such as a rare nonfunc-
tional transcription splice form, from biological-
ly important phenomena. The presence of such
noise may be an unavoidable part of the cell
regulatory machinery (76) and will only be dis-
tinguished from biologically important signals
through careful follow-up experimentation. An-
other limitation is that almost all experiments
were performed in populations of whole animals
composed of multiple tissues. Future studies will
increase the tissue-specific resolution of the data.

Model organisms such as C. elegans have
long served as key experimental systems for
developing technology and providing funda-
mental insights into human biology. Comparing
our modENCODE results with the ENCODE
pilot, which assessed functional elements in 1%
of the human genome, we can already begin to
see commonalities (6). For instance, for some ag-
gregated binding signals (such as for RNA Pol
II) the overall shape of the signal distributions
relative to the TSS are quite similar between hu-
man and C. elegans. Likewise, the overall amount
(per base pair) of transcription and binding by
TFs is comparable (fig. S49 and tables S15 and
S16). However, there are differences in the shape
of the aggregated signal distributions for a few
matched histone modifications (Fig. 6 versus
fig. S50). Moreover, the relative proportion of
constrained genome covered by experimental an-
notation is quite different in human and nema-
tode, perhaps reflecting evolutionary pressures
for a compact genome in the latter (fig. S48). A
more comprehensive comparison, including the
Drosophila genome data presented in the ac-
companying article, must await genome-wide
analysis of human cells—an effort currently
underway in the ENCODE project.

The modENCODE data sets are intended as
an enduring resource for the genomics com-
munity. All raw and analyzed data, metadata,
and interpreted results are available at www.
modencode.org, where they can be searched,
displayed, and downloaded. Raw sequencing
reads and microarray data are archived at the
Short-read Archive and the Gene Expression
Omnibus, and higher-order results are being
incorporated into WormBase (77). In addition,
we have assembled a compact guide to the data
sets used (at www.modencode.org/publications/
integrative_worm_2010) (table S1) (6) and have
populated a community cloud-computing re-
source with the data and analysis tools to
facilitate further investigation by interested
researchers (6). We expect that analyses of these
data sets in the coming years will provide
additional insights into general principles of
genome organization and function, which will
ultimately aid in annotating and deciphering the
human genome.
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Carrie A. Davis,13 Michael O. Duff,14 Xin Feng,13,18,35 Andrey A. Gorchakov,11 Tingting Gu,15
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To gain insight into how genomic information is translated into cellular and developmental
programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project
is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription
factors, replication proteins and intermediates, and nucleosome properties across a developmental
time course and in multiple cell lines. We have generated more than 700 data sets and discovered
protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than
tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these
elements reveal a functional regulatory network, which predicts putative new functions for genes,
reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results
provide a foundation for directed experimental and computational studies in Drosophila and
related species and also a model for systematic data integration toward comprehensive genomic
and functional annotation.

Several years after the complete genetic se-
quencing of many species, it is still unclear
how to translate genomic information into

a functional map of cellular and developmental
programs. The Encyclopedia of DNA Elements
(ENCODE) (1) and model organism ENCODE
(modENCODE) (2) projects use diverse genomic
assays to comprehensively annotate the Homo
sapiens (human), Drosophila melanogaster (fruit
fly), andCaenorhabditis elegans (worm) genomes,

through systematic generation and computational
integration of functional genomic data sets.

Previous genomic studies in flies have made
seminal contributions to our understanding of
basic biological mechanisms and genome func-
tions, facilitated by genetic, experimental, compu-
tational, andmanual annotation of the euchromatic
and heterochromatic genome (3), small genome
size, short life cycle, and a deep knowledge of
development, gene function, and chromosome

biology. The functions of ~40% of the protein-
and nonprotein-coding genes [FlyBase 5.12 (4)]
have been determined from cDNA collections
(5, 6), manual curation of gene models (7), gene
mutations and comprehensive genome-wide
RNA interference screens (8–10), and compara-
tive genomic analyses (11, 12).

The Drosophila modENCODE project has
generated more than 700 data sets that profile
transcripts, histone modifications and physical
nucleosome properties, general and specific tran-
scription factors (TFs), and replication programs
in cell lines, isolated tissues, and whole orga-
nisms across several developmental stages (Fig. 1).
Here, we computationally integrate these data
sets and report (i) improved and additional ge-
nome annotations, including full-length protein-
coding genes and peptides as short as 21 amino
acids; (ii) noncoding transcripts, including 132
candidate structural RNAs and 1608 nonstruc-
tural transcripts; (iii) additional Argonaute (Ago)–
associated small RNA genes and pathways,
including new microRNAs (miRNAs) encoded
within protein-coding exons and endogenous small
interfering RNAs (siRNAs) from 3′ untranslated
regions; (iv) chromatin “states” defined by com-
binatorial patterns of 18 chromatin marks that are
associated with distinct functions and properties;
(v) regions of high TF occupancy and replication
activitywith likely epigenetic regulation; (vi)mixed
TF and miRNA regulatory networks with hierar-
chical structure and enriched feed-forward loops;
(vii) coexpression- and co-regulation–based func-
tional annotations for nearly 3000 genes; (viii)
stage- and tissue-specific regulators; and (ix)
predictive models of gene expression levels and
regulator function.

Overview of data sets. Our data sets provide
an extensive description of the transcriptional, epi-
genetic, replication, and regulatory landscapes of
the Drosophila genome (table S1). Experimental
assays include high-throughput RNA sequencing
(RNA-seq), capturing-small and large RNAs and
splice variants; chromatin immunoprecipitation
(ChIP)–chip andChIP followed by high-throughput
sequencing (ChIP-seq), profiling chromosomal
and RNA binding or processing proteins; tiling-
arrays, identifying and measuring replication pat-
terns, nucleosome solubility, and turnover; and
genomic DNA sequencing, measuring copy-
number variation. We conducted most assays in
the sequenced strain y; cn bw sp (13), with mul-
tiple developmental samples (30 for RNA expres-
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CorreCtions & CLarifiCations

www.sciencemag.org    sCiEnCE    erratum post date    7 JanuarY 2011 

Erratum
Research Articles: “Integrative analysis of the Caenorhabditis elegans genome by the 
modENCODE Project” by M. B. Gerstein et al. (24 December 2010, p. 1775). There were 
two errors in the reference list. The first author of reference 15 should be W. C. Spencer. 
The periodical in reference 57 should be Genome Biology.
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provide basic information needed to guide and correlate both focused and genome-wide studies.
characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and
DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were 
studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where
genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both 

 genome, full transcriptome analyses over developmental stages,Drosophila melanogaster(p. 1787) summarize for the 
The modENCODE Consortium genome, and Caenorhabditis elegans (p. 1775) summarize for the et al.Gerstein vein, 

). In thisBlaxtercharacterize how the genome is used to help to produce a functional organism (see the Perspective by 
much more investigation is still needed to−−For biologists, having a genome in hand is only the beginning
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