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Deadenylases are best known for degrading the poly(A)  
tail during mRNA decay. The deadenylase family has expanded 
throughout evolution and, in mammals, consists of 12 
Mg2+-dependent 3′-end RNases with substrate specificity 
that is mostly unknown1. Pontocerebellar hypoplasia type 
7 (PCH7) is a unique recessive syndrome characterized by 
neurodegeneration and ambiguous genitalia2. We studied  
12 human families with PCH7, uncovering biallelic,  
loss-of-function mutations in TOE1, which encodes an 
unconventional deadenylase3,4. toe1-morphant zebrafish 
displayed midbrain and hindbrain degeneration, modeling 
PCH-like structural defects in vivo. Surprisingly, we found  
that TOE1 associated with small nuclear RNAs (snRNAs)  
incompletely processed spliceosomal. These pre-snRNAs 
contained 3′ genome-encoded tails often followed by post-
transcriptionally added adenosines. Human cells with reduced 
levels of TOE1 accumulated 3′-end-extended pre-snRNAs, and 
the immunoisolated TOE1 complex was sufficient for 3′-end  
maturation of snRNAs. Our findings identify the cause of a 
neurodegenerative syndrome linked to snRNA maturation and 
uncover a key factor involved in the processing of snRNA 3′ ends. 

The onset of pontocerebellar neurodegeneration occurs so early that it 
overlaps with neurodevelopment, and it is thus alternatively referred 
to as pontocerebellar hypoplasia (PCH)5. PCH7 (MIM 614969) is 

characterized by neurological deterioration, atrophy or hypopla-
sia of the pons and cerebellum, muscular hypotonia and breathing 
abnormalities, in combination with hypogonadism2. This combina-
tion of rare conditions suggests a unique syndromic association due 
to mutation of a single gene, but no locus or causative gene has been 
identified to date. We recruited 12 families meeting criteria for PCH7, 
including the index family on the basis of which the condition was 
defined (Fig. 1a), and we confirmed that the clinical features of these 
families matched those published for PCH7 (Supplementary Table 1).  
These features included reduced pons and cerebellum parenchyma  
(Fig. 1b), ventriculomegaly, thin corpus callosum and variable 
hypogonadism—ranging from absent gonads to ovarian and uter-
ine remnants or atrophic and undescended testes (Supplementary  
Fig. 1a,b). All patients and families were enrolled in institutional 
review board (IRB)-approved protocols at referral institutions and 
provided consent for study. We performed whole-exome sequencing 
in the proband and parents from Egyptian families 1275 and 1603. 
Aligning the genomic variants uncovered a homozygous mutation in 
TOE1 encoding p.Glu220Lys (NC_000001.11) within a shared haplo-
type of 500 kb (Fig. 2a and Supplementary Fig. 2a,b), which is indica-
tive of shared ancestry for these families. All ten additional families 
enrolled subsequently proved positive for biallelic mutations in TOE1 
(Fig. 2a and Supplementary Table 2). The variants were all predicted 
to impair expression of full-length TOE1 or affect protein function6 by 
altering well-conserved amino acids (Fig. 2b) and were not observed 
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in our in-house database of 4,000 ancestry-matched exomes. We con-
firmed that each variant segregated according to a recessive mode of 
inheritance in all genetically informative members of each family, 
suggesting that TOE1 biallelic mutations underlie PCH7.

To test whether TOE1 missense mutations were likely to inter-
fere with protein function, we modeled them on the structure of 

the protein encoded by paralogous CNOT7 (UniProt, Q9UIV1)  
(Supplementary Fig. 3a). Most variant residues were on the surface 
rather than within the RNA-binding cleft, suggesting that they are 
not likely to directly affect deadenylase activity (Fig. 2c). Next, we 
established primary fibroblast cultures from individuals carrying 
homozygous mutations encoding p.Glu220Lys, p.Phe148Tyr and 
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Figure 1 TOE1 mutations lead to pontocerebellar hypoplasia with abnormal genitalia (PCH7). (a) Pedigrees of affected families showing recessive 
inheritance. Double bar, consanguineous marriage; open circle, unaffected female; open square, unaffected male; filled circle, affected female; filled 
square, affected male; triangle, spontaneous abortion; open diamond, unaffected individual of unknown sex; diagonal line, deceased. Arrows indicate 
probands. (b) Magnetic resonance midline sagittal (top) and axial (bottom) images showing reduced cerebellar volume in affected individuals (yellow arrows).
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p.Ala103Thr, as well as their unaffected relatives (families 1603, 
4127 and 4128, respectively). Patient-derived fibroblasts had reduced 
levels of TOE1 protein as determined by protein blot (Fig. 2d and 
Supplementary Fig. 3b). Additionally, neural progenitor cell (NPC) 
lines that were derived from an affected individual of family 1603 
showed less TOE1 protein than NPC lines from an unaffected relative 
and control NPCs (Fig. 2e and Supplementary Fig. 3b,c). Together, 
these results indicate that TOE1 amino acid substitutions negatively 
affect protein accumulation.

To assess whether TOE1 mutations affect protein levels, we generated 
single-site-integration T-REx-293 cell lines for tetracycline-regulated  
expression of small interfering RNA (siRNA)-resistant transcripts for 
wild-type human TOE1 and the Glu220Lys, Phe148Tyr, Val173Gly 
and Ala103Thr variants. When cells were depleted of endogenous 
TOE1 and induced with a concentration of tetracycline that promoted 
accumulation of wild-type TOE1 to near-endogenous levels, we 
observed reduced levels of mutant TOE1 as compared with wild-type 

TOE1, despite similar mRNA levels (Supplementary Fig. 3d,e).  
In contrast, a previously characterized, catalytically inactive mutant 
of TOE1 (DE) accumulated to similar levels as wild-type protein 
(Supplementary Fig. 3e)4. These results are consistent with our find-
ings from patient-derived cell lines and indicate that the mutations in 
affected individuals are deleterious by reducing TOE1 levels.

Because human TOE1 and mouse Toe1 were expressed in all tested 
tissues (Supplementary Fig. 4a,b), we generated Toe1-mutant mice 
to test for defects in vivo. Embryos with homozygous Toe1 frameshift 
mutations showed uniform lethality before embryonic day (E) 11.5 
(Supplementary Fig. 4c), demonstrating that Toe1 is required for 
mouse development. Because the mutations in human patients allow 
for partial expression of TOE1 protein, we next turned to morpholino 
(MO)-based knockdown in zebrafish, where protein dosage could be 
regulated, to create a PCH7 disease model (Supplementary Fig. 5a).  
Knockdown of the single toe1 ortholog (NM_001256682.1) led to 
a reproducible phenotype comprising microcephaly, small eyes and 
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curly tail in 90% of embryos by 48 hours post-fertilization (h.p.f.), 
which was rescued by co-injection with human TOE1 mRNA but not 
mRNA encoding the catalytically inactive DE mutant or the mutants 
identified in patients (Fig. 3a and Supplementary Fig. 6a). To visual-
ize neurons, we performed whole-mount immunofluorescence for the 
neuronal marker HuC. Like the human patients, zebrafish injected 
with toe1 MO showed structural defects of the developing midbrain, 
cerebellum and hindbrain (Fig. 3b). This phenotype was largely res-
cued by co-injection with wild-type zebrafish toe1 or human TOE1, 
but not the mutant mRNAs (Fig. 3b and Supplementary Figs. 5b 
and 6b). To determine whether neuronal loss in the zebrafish injected 
with toe1 MO was due to cell death, we performed staining for cleaved 

caspase-3 (Casp3) at 24 h.p.f. While zebrafish injected with control 
MO showed few Casp3-positive cells, those injected with toe1 MO 
showed a dramatic apoptotic response that was consistent with neu-
rodegeneration (Supplementary Fig. 5c). We conclude that reduced 
expression of TOE1 leads to neurodegeneration and PCH-like  
structural brain defects in vivo.

TOE1 was originally identified as a growth suppressor and a 
direct target gene of ERG1, an immediate-early transcription factor3.  
We reported TOE1, which is alternatively called CAF1z because of 
homology with CAF1 deadenylases, as a 3′-to-5′ exonuclease with a 
preference for adenosines in vitro4. Unlike characterized mRNA dead-
enylases, TOE1 is concentrated in nuclear Cajal bodies4. Cajal bodies 

a

toe1 ATG MO toe1 splice MO

toe1 splice MO + hTOE1DE mRNA

b

0

20

40

60

80

100

U
ni

nj
ec

te
d

C
on

tr
ol

 M
O

to
e1

 A
T

G
 M

O

to
e1

 s
pl

ic
e 

M
O

to
e1

 s
pl

ic
e 

M
O

+
 z

T
oe

1 
m

R
N

A
 

to
e1

 s
pl

ic
e 

M
O

+
 h

T
O

E
1 

m
R

N
A

to
e1

 s
pl

ic
e 

M
O

+
 h

T
O

E
1D

E
 m

R
N

A
 

M
or

ph
ol

og
ic

al
ph

en
ot

yp
e 

(%
)

Uninjected Control MO

toe1 splice MO + zToe1 mRNA toe1 splice MO + hTOE1 mRNA

48
 h

.p
.f.

HuC

toe1 splice MO
toe1 splice MO +

zToe1 mRNA
toe1 splice MO +

hTOE1 mRNA

toe1 splice MO +

hTOE1DE mRNA

HuC

Uninjected

HuC

Control MO

HuC

toe1 ATG MO

HuC

HuC HuC

Midbrain Developing
cerebellum

Hindbrain
and spinal cord

48 h.p.f.

Normal Moderate Severe
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are rich in enzymes that process RNAs not known to have poly(A) 
tails, suggesting that  TOE1 might target non-poly(A) RNA substrates.  
More recently, TOE1 was shown to associate with spliceosomal 
proteins7,8, which are known to localize to Cajal bodies, and TOE1 
depletion caused defective splicing of a pre-mRNA reporter7. To vali-
date TOE1 association with the spliceosome, we performed TOE1 
knockdown together with expression at near-endogenous levels of 
FLAG-tagged wild-type or DE mutant TOE1 in T-REx-293 cells fol-
lowed by immunoprecipitation (IP). As assessed by RNA blotting 
(Fig. 4a) and tandem mass spectrometry (MS) (Supplementary  
Fig. 7 and Supplementary Table 3), TOE1 assembled with snRNAs 
and, in near-complete overlap with previously reported immunopre-
cipitation and mass spectrometry (IP–MS) results7, with spliceosomal 
proteins. The CCR4-like protein ANGEL2 (also known as CCR4D), 
which we previously reported in complex with TOE1 (ref. 4), was 
not detected in our IP–MS analysis, possibly owing to low cellular 
abundance of this protein9.

Inspection of RNA blots for snRNAs associated with the DE TOE1 
catalytic mutant revealed slower-migrating U1, U2 and U5 snRNA 
species (Fig. 4a). Processing of RNA polymerase II (Pol II)-transcribed 
snRNAs (U1, U2, U4 and U5) initiates with co-transcriptional cleav-
age by the Integrator complex downstream of the mature 3′ end10, 
but the mechanism mediating the removal of the 3′ tail to produce a 
mature-length snRNA is unknown11,12. To characterize the snRNAs 
that migrated slower in the RNA blots, we performed 3′-end sequenc-
ing of TOE1-associated snRNAs and found that TOE1 bound to  
Pol II–transcribed snRNAs that were incompletely processed at the 
3′ end (Fig. 4b,c and Supplementary Fig. 8), suggesting that TOE1 
may mediate snRNA 3′-tail processing.

The 3′-tail sequences of TOE1-associated pre-snRNAs consisted of 
both genome-encoded and post-transcriptionally added nucleotides, 
henceforth referred to as templated and untemplated tails, respectively 
(Fig. 4b,c and Supplementary Fig. 9a). The untemplated snRNA tails, 
which were previously observed by global 3′-end sequencing of non-
coding RNA13, were found almost exclusively on snRNAs that were 
either longer or shorter than their annotated mature length and con-
sisted primarily of uridines and adenosines, with snRNAs associated 
with DE TOE1 predominantly enriched for untemplated 3′ adenosines 
(Supplementary Fig. 9a,b). Interestingly, 3′ maturation of U2 snRNA 
finishes with the addition of an untemplated 3′ adenosine14, but this 
modification was entirely absent from TOE1-associated U2 snRNAs 
(Supplementary Fig. 9b). Taken together, these observations suggest 
that TOE1 associates specifically with pre-snRNAs that are not fully 
processed at the 3′ end and have often acquired untemplated tails.

snRNAs associated with DE TOE1 contained longer tails than those 
associated with wild-type TOE1, suggesting that TOE1 may catalyti-
cally process these tails. In accordance with this hypothesis, 3′-end 
sequencing of the total snRNA pool showed an increased fraction 
of 3′-end-extended snRNAs upon depletion of TOE1 (Fig. 4b and 
Supplementary Fig. 8). Notably, complementation with exogenous 
wild-type TOE1 rescued the snRNA 3′-end defect, while addition of DE 
TOE1 failed to rescue the defect (Fig. 4b and Supplementary Fig. 8).  
There was little to no accumulation of 3′ tails for C/D-box U3 and 
H/ACA-box SNORA63 small nucleolar RNAs (snoRNAs), 5.8S rRNA, 
tRNAs and U6 snRNA (Supplementary Figs. 8 and 10), which, like 
Pol II–transcribed snRNAs, are processed from 3′-extended precursor 
RNAs15–18. These results support a catalytic role for TOE1 as a 3′-to-5′ 
exonuclease with specificity for snRNA processing.

TOE1 could promote either maturation or degradation of pre-
snRNAs. To distinguish between these possibilities, we tested the 
activity of immunoisolated TOE1 on co-purifying pre-snRNA  
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to FLAG are shown to the right. Asterisks mark slower-migrating snRNA 
species associated with TOE1 DE, suggesting impaired processing. (b) Left, 
cumulative plots of sequence reads for snRNA 3′ ends corresponding to the 
average of three independent experiments. Position 0 refers to the mature 3′ 
end of the snRNAs33, with shaded areas corresponding to 3′-end positions 
within the mature snRNAs. Reads terminating at position –4 or further 
downstream are represented (see supplementary Fig. 8b for all reads). 
Dotted lines represent the 3′-end positions of genome-templated snRNA 
sequences, and solid lines mark the 3′-end positions of snRNA sequences, 
including untemplated tails. RIP, RNA immunoprecipitation. Right, bar 
graphs showing the average percentage of snRNA reads with 3′ tails from 
three independent experiments. Independent experiments are represented 
by dots. Error bars represent s.d. from three independent experiments, and 
P values were determined by Student’s two-tailed paired t test: *P < 0.05, 
**P < 0.01. The cumulative plots and bar graphs for the U1 and U5 snRNAs 
represent reads from all snRNA variants, whereas for the U2 snRNA reads 
are only from the RNU2-1 gene (see supplementary Fig. 8b for RNU2-2P) 
and the 3′ adenosine added to mature RNU2-1 snRNAs was left out of the 
analysis to allow visualization of exonucleolytic processing. (c) Schematic of 
a U1 snRNA processing intermediate with 3′-end templated tail (encoded 
nucleotides) and untemplated tail (unencoded nucleotides). 
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ribonucleoprotein complexes (pre-snRNPs) in vitro. RNA blot analyses 
showed Mg2+- and active-site-dependent shortening of U1, U2 and U5 
pre-snRNAs by TOE1 with no overall loss of snRNA levels (Fig. 5a),  

Figure 5 TOE1 enzymatic activity processes snRNA 3′ ends. (a) RNA 
from TOE1 activity assays. Left, input RNA samples from cells treated 
with siCtrl or siTOE1 and then induced to express either wild-type or 
DE FLAG-TOE1 at near-endogenous levels. Right, samples from RNA 
immunoprecipitation with antibody to FLAG were divided and treated with 
either 2 mM Mg2+ or 2 mM EDTA on beads after IP; asterisks mark TOE1-
processed snRNAs. (b) Cumulative plots showing the 3′-end positions of 
wild type– or DE TOE1–associated U1 and U5 snRNAs after incubation 
with Mg2+ or EDTA. The shaded area corresponds to reads terminating 
within the mature snRNAs. For U5 snRNA, an alternative 3′ end (alt 3′ 
end) is indicated. (c) Primary Pol II–transcribed snRNAs (pri-snRNAs) are 
co-transcriptionally cleaved by the Integrator complex. Remaining 3′ tails 
are subsequently processed to mature length by TOE1, in a process that 
might involve a 3′ terminal nucleotidyltransferase (3′ TnT).

suggesting that TOE1 has a function in maturation rather than degra-
dation. 3′-end sequencing confirmed that the in vitro processing of U1,  
U2 and U5 by TOE1 halted at or before the mature 3′ end (Fig. 5b 
and Supplementary Fig. 11a), including at an alternative U5 3′ end 
also present in total cellular snRNA (Supplementary Fig. 8b). In 
accordance with TOE1 having a function in maturation rather than 
degradation, TOE1 depletion did not affect the levels of unstable 
endogenous variants of U1 snRNA (Supplementary Fig. 11b)19, nor 
did it affect the levels or 3′ processing of unstable U1 snRNAs mutated 
in the Sm-binding site (Supplementary Fig. 11c,d)20, suggesting that 
the latter are targeted for degradation before 3′ processing by TOE1.  
We conclude that TOE1 acts in snRNA 3′-end maturation (Fig. 5c).

To determine whether TOE1 mutations affect snRNA processing 
in the individuals in whom they are present, we performed snRNA 
3′-end sequencing in the patient-derived cell lines. This identified an 
increased fraction of U1 and U2 snRNAs, as well as U5 snRNA to a 
lesser extent, that contained tails in fibroblasts derived from patients 
with TOE1 mutations when compared to those derived from their 
unaffected relatives, which were indistinguishable from the control 
(Fig. 6a and Supplementary Fig. 12a,b). Similarly, patient-derived 
NPC lines showed enrichment for snRNA extensions (Fig. 6b and 
Supplementary Fig. 12a,b). We conclude that cells derived from 
patients with PCH7 accumulate incompletely processed snRNAs.

In summary, we have shown that individuals with PCH7 harbor 
biallelic, damaging mutations in TOE1 that result in the accumula-
tion of incompletely processed snRNAs. The involvement of TOE1 
in snRNA maturation was surprising, given the homology of TOE1 
with CAF1 mRNA deadenylases and its preference for poly(A) RNA in 
vitro4. However, this result could provide a mechanistic explanation for 
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Figure 6 Patient-derived fibroblasts and neuronal progenitor cells show 
defects in snRNA 3′ ends. (a) Top, cumulative U1 and U2 snRNA 3′-
end sequence reads for fibroblasts from affected (A) and unaffected 
(U) individuals, showing that TOE1 mutations result in snRNA tails. 
Bottom, bar graph showing the percentage of reads with 3′ tails. (b) Top, 
cumulative U1 and U2 snRNA 3′-end sequence reads for NPCs from 
affected and unaffected individuals showing that TOE1 mutations result 
in snRNA tails in NPCs. Bottom, percentage of reads with 3′-end tails.
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ONLINE METHODS
Patient recruitment. Patients were enrolled and sampled according to stand-
ard local practice in approved human subjects protocols at the University of 
California, The Rockefeller University and The Academic Medical Center 
(AMC) in Amsterdam for blood, saliva and skin biopsy sampling.

Sequencing. Blood was acquired from informed, consenting individuals 
according to institutional guidelines, and DNA was extracted using estab-
lished protocols. Exome sequencing was performed on both the parents and 
affected member(s) from each family as previously described34. All variants 
were prioritized by allele frequency, conservation and predicted effect on 
protein function, and were tested by Sanger sequencing for segregation with 
disease. Sequence data were analyzed with Sequencer 4.9 (Gene Codes).

Genetic mapping. Chromosomal ideogram plots were generated using the 
Bioconductor package quantsmooth. Red represents homozygous regions that 
segregate between affected and unaffected family members.

Fibroblast culture, and iPSC and NPC generation. Fibroblasts were generated 
from unaffected and affected dermal biopsy explants. Induced pluripotent stem 
cells (iPSCs) and NPCs were obtained as previously described35. Mycoplasma 
testing was routinely performed, and all cell lines were negative.

cDNA synthesis and RT–PCR. cDNA was synthesized with the Superscript 
III First-Strand cDNA synthesis system for RT–PCR (Life Technologies) and 
used for real-time PCR or cloning. qRT–PCR for intron-containing tRNAs was 
performed in triplicate on 10 ng of human cDNA27. RT–PCR to assess toe1 
intron inclusion in zebrafish embryos morphant for toe1 splice-blocking MO 
was performed with 10 ng of zebrafish cDNA and primers flanking the first 
intron of zebrafish toe1 (Supplementary Table 4).

Plasmid constructs and stable cell line generation. The ORF of human TOE1 
was subcloned into pcDNA5/FRT/TO-FLAG with BamHI and NotI restric-
tion sites from pcDNA3-FLAG4. The ORF of zebrafish toe1 or human TOE1 
was subcloned into pCS2+ (ref. 36) with BamHI and XhoI. Missense muta-
tions were generated using the QuikChange Mutagenesis kit (Agilent). For 
expression of N-terminally FLAG-tagged proteins, stable HEK FLp-In T-REx-
293 cell lines were generated (Invitrogen). Mycoplasma testing was routinely  
performed, and all cell lines were negative.

RNA blotting. RNA was extracted using TRIzol and separated by electro-
phoresis on 9% 19:1 polyacrylamide, 0.6× Tris/borate/EDTA (TBE), 8 M urea 
gels at 20 mA per gel for 2 h. RNA was transferred in 0.5× TBE to nylon 
membrane at 25 V for 16 h. Membranes were UV cross-linked, blocked with 
Ultrahyb Oligo (Life Technologies) and hybridized with 5′-end-radiolabeled 
DNA oligonucleotides (Supplementary Table 4).

3′ RNA tail sequencing and analysis. RNA adaptors containing barcodes and 
10- to 11-nt randomers (Supplementary Table 4) were ligated to the 3′ ends of 
total and eluted RNA with T4 RNA ligase (New England BioLabs) at 16 °C for 
16 h, treated with RQ1 RNase-free DNase (Promega) for 30 min at 37 °C and 
extracted with PCA (Affymetrix). cDNA was generated using AR-17 primer 
with Superscript III (Life Technologies). 3′ ends were amplified by Q5 DNA 
polymerase (New England BioLabs) with snRNA-gene-specific primers and 
AR-17, and then with primers D501 and D702 (Illumina; Supplementary 
Table 5). For tRNA 3′-end sequencing, tRNAs were gel purified from a 9% 
polyacrylamide urea gel and libraries were prepared using the eCLIP input 
RNA protocol (days 3 and 4)37 with the AG10N and AG11N 3′ RNA adaptors 
and the 3Tr3 5′ DNA adaptor (Supplementary Table 5). All libraries were 
purified on AMPure XP magnetic beads (Beckman) and validated by 2200 
TapeStation (Agilent). Libraries were pooled at a 4 nM concentration, dena-
tured with NaOH and diluted in HT1 buffer (Illumina) to 7 pM and were then 
sequenced with MiSeq Reagent Kit V2, Nano configuration (Illumina). snRNA 
3′ sequence reads were decomplexed, and duplicates were removed based on 
randomer sequences. Sequences were aligned with snRNA genes (including 
downstream regions) from Ensembl. snRNA 3′-end positions were identi-
fied based on perfect alignment with one or more snRNA genes (reads with  

nucleotide mismatches were removed from the analyses), and 3′ untemplated 
tails were identified as 3′ sequence additions that did not align with the 
genomic sequence. Each experiment generally generated 5,000–35,000 unique 
mapped reads, with the lowest number being 1,173 (Supplementary Table 4).  
Cumulative plots were generated from reads mapping to all U1, U4, U5 and 
U6 variants, whereas for U2 separate cumulative plots were generated for 
reads mapping to the RNU2-1 and RNU2-2P genes and reads were trimmed 
for the A and CA tails that are post-transcriptionally added to mature RNU2-1 
and RNU2-2P RNAs, respectively, to allow discrimination of the mature U2 
snRNAs from those that are incompletely 3′-end exonucleolytically processed 
(Figs. 4 and 6, and Supplementary Figs. 8b and 11a).

RNA immunoprecipitation and TOE1 activity assays. One 10-cm dish of sta-
ble cell lines expressing siRNA-resistant FLAG-TOE1 variants was transfected 
twice with 20 nM siRNA (Dharmacon) targeting either luciferase (siCtrl) or 
the 3′ UTR of TOE1 (siTOE1) using siLentFect (Bio-Rad) 72 h and 24 h before 
cell collection. Treatment with siTOE1 generally resulted in ~10–20% remain-
ing protein, as determined by protein blot (Supplementary Fig. 3d). At ~50% 
density, cells were induced for 24 h with tetracycline (1 ng/ml), collected in 
PBS and lysed in isotonic buffer containing 50 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, 0.2 mM EDTA, 0.1% Triton X-100, 1 mM PMSF, 2 µg/ml aprotinin,  
2 µg/ml leupeptin, 0.1 µg/ml yeast total RNA (Roche) and 80 U/ml RNaseOUT 
(Invitrogen) for 10 min on ice. Lysates were cleared at 20,000g for 15 min at 
4 °C. FLAG peptide was added to 1 µg/ml, and lysates were incubated for 
 2 h with anti-FLAG M2 beads (Sigma) at 4 °C. Beads were washed eight times 
with NET2 (10 mM Tris, pH 7.5, 150 mM NaCl and 0.1% Triton X-100). 
One-fifth of the beads were eluted in protein loading buffer, and the rest were 
resuspended in TRIzol (Life Technologies). RNA was extracted according to 
the manufacturer’s protocol. Activity assays were performed after washing and 
on the beads for 30 min at 25 °C with either 2 mM EDTA or 2 mM MgCl2.

Protein blotting. Protein blotting was performed with rabbit polyclonal 
antibody to Caf1z/Toe1 (ref. 4), rabbit polyclonal antibody to GAPDH (Cell 
Signaling, 2118s) and mouse antibody to vinculin (Sigma, V9264) at 1:1,000 
dilutions in 5% nonfat milk in PBST. The secondary antibodies were HRP-
conjugated anti-mouse and anti-rabbit secondary antibodies used at 1:20,000 
dilutions in 5% nonfat milk in PBST.

Animals. All animal experiments complied with the Institutional Animal Care 
and Use Committee at the University of California San Diego and were carried out 
in a non-blinded fashion. The Toe1-mutant mice were generated using CRISPR/
SpCas9 technology. Briefly, pronuclear co-injection with 5 ng of Cas9 mRNA and 
2.5 ng of sgRNA (targeting sequence, 5′-CTGTGTGAGATGTTCCCAGC-3′)  
was performed on 143 embryos. A total of 126 embryos were transferred into 
host dams for implantation, resulting in 23 live pups. Sanger sequence genotyp-
ing identified only one mouse with a heterozygous single-base-pair frameshift 
mutation (chr. 4: 116806688–89insA; c.668_669insA), resulting in a Toe1 null 
allele. Mutagenesis was performed on C57BL/6J single-cell blastocysts. Positive 
founders were bred to establish lines transmitting the Toe1 null allele. Male and 
female carriers were intercrossed at 6–8 weeks of age to assess the embryonic 
phenotype associated with Toe1 mutation.

Adult male and female zebrafish (<18 months old) from wild-type (AB 
Tubingen) and transgenic strains were maintained under standard labora-
tory conditions. At least three adult pairs were used to generate embryos at 
0–48 h.p.f. for each experiment. Translation-blocking antisense MO (7 ng), 
splice-blocking antisense MO (6 ng) and control non-targeting MO (7 ng) 
(Supplementary Table 5) (Gene Tools) were injected into one-cell-stage 
embryos. Gross morphology of zebrafish was assessed at 48 h.p.f., and embryos 
were defined as affected if they had an obviously misshapen head, small eyes 
and a curly tail (>10% reduction in head/eye size and >10° change in the 
angle of the tail). HuC/HuD whole-mount immunostaining was used to assess 
the presence of neuronal tissue. For mRNA rescue experiments, 0.1 pg of  
in vitro–transcribed zebrafish toe1 or human TOE1 mRNA (mMESSAGE 
mMACHINE, Ambion) was co-injected with 6 ng of splice-blocking MO into 
one-cell-stage embryos, and embryos were assessed at 48 h.p.f. for morphologi-
cal differences and neuronal tissue (minimum of 100 embryos per condition). 
Immunofluorescent staining was performed as previously described38 with 
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primary rabbit polyclonal antibody to caspase-3 (Abcam, ab13847) or primary 
mouse monoclonal antibody to HuC/HuD (Thermo Fisher, A-21271) and 
Alexa Fluor 488–conjugated anti-rabbit or anti-mouse secondary antibody. 
Zebrafish were immobilized in agarose, and fluorescent images were acquired 
with a Zeiss LSM 780 and Olympus FV1000 confocal microscope. Cells were 
counted using ImageJ. No statistical method was used to predetermine sample 
size. The experiments were not randomized.

Immunocytochemistry. Cells were seeded on coverslips and fixed in 4% para-
formaldehyde or 100% cold methanol, permeabilized with 0.1% Triton X-100, 
and blocked with 0.1% BSA and 0.5% gelatin from cold water fish skin in PBS. 
Cells were incubated with primary antibody in blocking solution overnight 
at 4 °C, washed and incubated with secondary antibody in blocking solution 
and 0.4 µg of Hoechst for 1 h at room temperature. The primary antibodies 
used were mouse antibody to nestin (EMD Millipore, MAB5326) and rabbit  
antibody to Pax6 (Covance, PRB-278P) at 1:1,000 dilutions. The secondary 
antibodies were Alexa Fluor 555–conjugated anti-rabbit and Alexa Fluor 
488–conjugated anti-mouse antibody at 1:500 dilutions. Images were taken 
with an Olympus IX51 inverted fluorescent microscope.

Mass spectrometry. Liquid chromatography and tandem mass spectrometry 
(LC–MS/MS) assays were performed as described previously39 using anti-
FLAG IP samples from extracts of T-Rex-293 cell lines stably expressing 
FLAG-tagged wild-type or DE TOE1 at near-endogenous TOE1 levels, with a 
parental cell line serving as a control.

Protein modeling. Needleman–Wunsch alignment of human TOE1 and 
CNOT7 was performed with protein–protein BLAST (pBLAST). Homologous 
TOE1 missense mutations, and previously published inactivating mutations6, 
were modeled onto the predicted protein structures of human CNOT7 (PDB 
2D5R) and TOE1 zinc-finger domain (PDB 2FC6). Patient mutations predicted 
to result in truncated protein (for example, nonsense, splice and frameshift 
mutations) were excluded from analysis. Residues not in alignment were 
excluded (Phe148). PyMOL was used to create 3D renderings.

Statistics. Student’s two-tailed paired t test was employed to test the sig-
nificance of accumulation of extended snRNAs as indicated (Fig. 4b and 
Supplementary Fig. 8a) (U1 snRNA: siCtrl vs. siTOE1, P = 0.0054; WT vs. 
DE, P = 0.0030; WT vs. RIP WT, P = 0.00069; DE vs. RIP DE, P = 0.0050; U2 
snRNA: siCtrl vs. siTOE1, P = 0.014; WT vs. DE, P = 0.014; WT vs. RIP WT, 
P = 0.0058; DE vs. RIP DE, P = 0.012; U5 snRNA: siCtrl vs. siTOE1, P = 0.032; 
WT vs. DE, P = 0.014; WT vs. RIP WT, P = 0.011; DE vs. RIP DE, P = 0.0027; 
U4 snRNA: siCtrl vs. siTOE1, P = 0.033; WT vs. DE, P = 0.016; WT vs. RIP 
WT, P = 0.12; DE vs. RIP DE, P = 0.042; U6 snRNA: siCtrl vs. siTOE1, P = 0.57; 
WT vs. DE, P = 0.015; WT vs. RIP WT, P = 0.021; DE vs. RIP DE, P = 0.19).  
Student’s two-tailed unpaired t test was employed to test the significance of 
cleaved caspase-3-positive cells in Supplementary Figure 5c (control MO vs. 
toe1 ATG MO, P = 0.015).

Data availability. The exome sequencing data for all individuals consented 
for public release of data in this study have been deposited to the database of 
Genotypes and Phenotypes (dbGaP) under accession phs000288.v1.p1. RNA 
sequencing data have been deposited into Gene Expression Omnibus (GEO) 
under accession GSE71536.
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