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Abstract 
Our expanding knowledge of the roles small regulatory RNAs play across numerous areas of 
biology, coupled with the promise of RNA-targeted therapies and small RNA-based medicines, 
create an urgent need for tools that can accurately identify and quantify small RNA:target 
interactions at scale. MicroRNAs (miRNA) are a major class of small RNAs in plants and animals. 
The experimental capture of miRNA:mRNA interactions by ligation into chimeric RNA fragments 
in chimeric CrossLinking and ImmunoPrecipitation (CLIP) provides a direct readout of miRNA 
targets by enabling profiling of miRNA targets with high-throughput sequencing. Despite the 
power of this approach, widespread adoption of chimeric CLIP has been slow due to both 
methodological technical complexity as well as limited recovery of chimeric molecules (particularly 
beyond the most abundant miRNAs). Here we describe chimeric eCLIP, in which we integrate a 
chimeric ligation step into AGO2 eCLIP to enable chimeric read recovery. We show that removal 
of the cumbersome polyacrylamide gel and nitrocellulose membrane transfer step common to 
CLIP techniques can be omitted for chimeric AGO2 eCLIP to create a simplified high throughput 
version of the assay that maintains high signal-to-noise. With the increased yield of recovered 
miRNA:mRNA interactions in no-gel chimeric eCLIP, we show that simple enrichment steps using 
either PCR or on-bead probe capture can be added to chimeric eCLIP in order to target and enrich 
libraries for chimeric reads specific to one or more miRNAs of interest in both cell lines and tissue 
samples, resulting in 30- to 175-fold increases in recovery of chimeric reads for miRNAs of 
interest. We further demonstrate that the same probe-capture approach can be used to recover 
miRNA interactions for a targeted gene of interest, revealing both distinct miRNA targeting as well 
as co-targeting by several miRNAs from the same seed family. RNA-seq analysis of gene 
expression following miRNA overexpression confirmed miRNA-mediated repression of chimeric 
eCLIP-identified targets and indicated that probe-enriched chimeric eCLIP can provide additional 
sensitivity to detect regulated targets among genes that either contain or lack computationally 
predicted miRNA target sites. Thus, we believe that chimeric eCLIP will be a useful tool for 
quantitative profiling of miRNA targets in varied sample types at scale, and for revealing a deeper 
picture for regulatory networks for specific miRNAs of biological interest.  
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Highlights 
 
• No-gel chimeric eCLIP improves recovery of miRNA:mRNA interactions by 70-fold  
 
• Probe- and PCR-enrichment deeply profiles mRNA targets of miRNAs of interest 
 
• Chimeric eCLIP targets experimentally identify non-computationally predicted interactions 
 
• Increased depth recovers ~6 million miRNA:target chimeras in HEK293T 
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Introduction 
 
MicroRNAs (miRNAs) are small non-coding RNAs that regulate target genes via complementarity 
to messenger RNAs (mRNA), resulting in post-transcriptional repression of hundreds of mRNAs. 
Regulation via miRNA-mediated repression of gene expression has been shown to be involved 
in nearly every physiological system and misregulation of miRNA biology has been implicated in 
a broad spectrum of diseases ranging from cancer to neurodegenerative diseases (Quinlan et al., 
2017; Rupaimoole and Slack, 2017). Many miRNAs also display tissue-, cell type-, or condition-
specific expression patterns and play key roles in the regulation of developmental programs 
(DeVeale et al., 2021; Manakov et al., 2009). Consequently, miRNAs have become attractive 
tools and targets for biomedical advancements. Currently several small molecules and antisense 
oligos that target miRNA biogenesis as well as miRNA mimics themselves are in clinical trials as 
candidate therapies for diseases such as non-small cell lung cancer, keloid, chronic hepatitis C, 
cutaneous T-cell lymphoma and Alport’s syndrome (Rupaimoole and Slack, 2017; Zhu et al., 
2020). Thus, the repertoire of miRNA targets is a key determinant of the biological role of a given 
miRNA (Ebert and Sharp, 2012). Active research and development in the area of RNA-targeted 
therapies creates a need for tools that can accurately profile miRNA:mRNA target interactions in 
different cell cultures and tissues at scale.  
 
Generally, miRNAs exert their repressive regulatory function by guiding the RNA-induced 
silencing complex (RISC) to complementary target sites in the 3′ untranslated region (UTR) of 
target mRNAs resulting in mRNA degradation, translation inhibition, or sequestration (Bartel, 
2018). Building upon this principle of sequence complementarity, various algorithms have been 
developed to predict miRNA:mRNA interactions throughout the transcriptome (Agarwal et al., 
2015; Krek et al., 2005). Computational approaches typically focus on a small set of key features, 
including sequence complementarity particularly in nucleotides 2-8 (commonly referred to as the 
‘seed’ region of the miRNA), and sequence conservation across species. However, many verified 
targets do not meet these standard criteria (Gebert and MacRae, 2019), and the reliance on 
conservation limits detection of species-specific interactions.  
 
Experimental identification of direct miRNA interactions on a large scale has proven more 
challenging. Recent efforts have shown success at identifying candidate miRNA target sites in 
vitro using purified RISC complex pre-loaded with a miRNA of interest, followed by high-
throughput RNA binding assays (Becker et al., 2019; McGeary et al., 2019). Although these 
studies allow unprecedented depth in exploring the binding kinetics of individual miRNAs, it is 
important to pair these approaches with methods to experimentally validate the presence of 
miRNA:target interactions in vivo. Such profiling of miRNA targets in cell culture or tissues typically 
relies on immunoprecipitation (IP) of Argonaute (AGO) protein components of the RISC, followed 
by converting associated RNA into libraries that can be subjected to high-throughput sequencing 
in order to quantify association. Early methods including RNA Immunoprecipitation (RIP) and 
CrossLinking and ImmunoPrecipitation (CLIP) of AGO proteins provided the first broad view of 
the miRNA interaction landscape, revealing principles of miRNA regulation mechanisms as well 
as an overview of mRNAs regulated by miRNAs (Chi et al., 2009; Hafner et al., 2010). Although 
these approaches do not explicitly identify the miRNA which recruits the RISC complex to 
identified AGO2 binding sites, further development of computational methods addressed this 
limitation by utilizing analysis of sequence and altered binding upon miRNA over-expression or 
knockdown to predict these specific miRNAs (Erhard et al., 2013; Majoros et al., 2013). Although 
the combination of AGO IP and computational analysis has the advantage of enabling prediction 
of interactions for all miRNAs in one experiment, there remains many situations where 
experimental mapping of direct miRNA:target interactions would be preferred.  
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To enable this direct experimental mapping of microRNA:target interactions, a suite of chimeric 
CLIP methods including CrossLinking And Sequencing of Hybrids (CLASH), modified iPAR-CLIP, 
and CLEAR-CLIP (Broughton et al., 2016; Grosswendt et al., 2014; Helwak et al., 2013; Moore 
et al., 2015) were developed. These methods use computational analysis coupled with 
experimental modification of the standard CLIP method to generate and identify miRNA:mRNA 
‘chimeric’ reads which reflect ligation of a miRNA with the target RNA that the miRNA is bound 
to. This snap shot of in vivo miRNA:mRNA interactions provided a unique ability to characterize 
the principles of miRNA:target binding through both seed and auxiliary region base-pairing, and 
provided insight into how these rules can impact functional regulation. However, despite the 
obvious power of direct experimental identification of miRNA targets, widespread adoption of 
these methods remains limited, as both the poor recovery of AGO-crosslinked RNA as well as 
the low fraction of chimeric reads make it difficult to deeply profile the interactome of a miRNA of 
interest at a reasonable cost. We reasoned that the recent development of improved CLIP 
methods that increase the recovery of protein-bound RNA by more than a thousand-fold over 
prior CLIP methods (Lee et al., 2021; Van Nostrand et al., 2016; Zarnegar et al., 2016) 
represented an opportunity to expand the utility of chimeric CLIP approaches. 
 
Here we describe chimeric eCLIP coupled with AGO2 immunoprecipitation, which builds upon the 
improvements we described in eCLIP by modifying the standard eCLIP assay with an added 
ligation step to encourage generation of chimeric reads from both cell lines (HEK293T) and 
tissues (mouse liver). Further, we find that in the case of chimeric AGO2 CLIP, omitting the SDS-
PAGE and nitrocellulose membrane transfer steps dramatically increases recovery of miRNA 
chimeric reads and simplifies the workflow, and rigorously validate that this approach maintains 
high signal-to-noise ratio. With this increased recovery, we show that chimeric eCLIP can be 
combined with PCR-based or antisense oligonucleotide probe capture to enrich libraries for 
chimeric reads specific to one or more miRNAs or genes of interest, enabling deep profiling of 
miRNA regulatory networks of interest with a robust and simplified chimeric CLIP protocol.  
 
Design 
 
Here, we combine chimeric CLIP methods, where chimeric fragments directly link miRNA and 
target RNA transcript within the same sequencing read to unambiguously identify miRNA targets, 
with the methodological (library preparation) improvements in eCLIP and library 
capture/enrichment approaches to develop technologies that enable scalable and deep profiling 
of miRNA targets, particularly for individual miRNAs of interest. 
 
Integration of chimeric ligation with eCLIP 
 
Although chimeric ligation of small RNAs with their targets can occur at low frequency during 
standard CLIP (Broughton et al., 2016; Grosswendt et al., 2014), chimeric CLIP-seq approaches 
(including CLASH, CLEAR-CLIP, and modified iPAR-CLIP) have modified this approach by 
incorporating both a phosphorylation step (using 3' phosphatase minus T4 Polynucleotide Kinase) 
as well as an additional ligation step (without adapters) to encourage proximity-based ligation and 
increase the frequency of chimeric fragments to as much as 5.3% (Grosswendt et al., 2014; 
Helwak et al., 2013; Moore et al., 2015). However, the fact that the number of chimeras recovered 
per miRNA correlates well with miRNA abundance (Moore et al., 2015) coupled with the generally 
low efficiency of recovery of protein-crosslinked RNA with prior CLIP methods makes it 
challenging to obtain sufficient signal for individual miRNAs to perform traditional peak calling, 
particularly past the few most abundant miRNAs.  
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Thus, we set out to create a chimeric eCLIP method that combines the improved library 
preparation steps we developed in the enhanced CLIP (eCLIP) procedure (Van Nostrand et al., 
2016) with these optimizations for recovery of miRNA:target chimeras. First, we incorporated the 
3’ phosphatase minus T4 PNK and no-adapter ligation steps into a standard AGO2 eCLIP 
experiment. Next, as recovery of chimeric fragments requires that the reverse transcription read 
through the protein:RNA crosslink site (rather than terminate at this adduct, as often occurs in 
CLIP (Konig et al., 2010)), we utilized an altered Mn2+ buffer for reverse transcription that is 
common in RNA structure probing experiments (Siegfried et al., 2014) and that we previously 
showed to increase crosslink site readthrough in eCLIP (Van Nostrand et al., 2017b). Finally, as 
successful mapping of chimeric miRNA:target reads requires at least 40 nt total length (including 
both a 20-22nt miRNA and a sufficient target sequence to uniquely map), miRNA-only and other 
undesired smaller fragments could be further depleted from the final sequencing library by 
increasing the lower bound of the size selection performed at both the nitrocellulose membrane 
isolation and final library purification step (either by agarose gel purification or bead cleanup).  

 
Increased recovery of AGO2-associated RNA with no-gel chimeric eCLIP 
 
In addition to being experimentally intricate and difficult to scale or automate, the SDS-PAGE, 
nitrocellulose transfer, and RNA extraction steps are some of the major points of sample loss 
during CLIP protocols. Thus, developing approaches to transition away from these steps towards 
a ‘no-gel’ approach, while avoiding an increase in background (either in co-immunoprecipitated 
proteins, or co-purification of non-crosslinked RNA), has been a major point of emphasis in the 
CLIP field (Ilik et al., 2020). Use of denaturing washes (typically coupled with the use of HIS, 
biotin, HALO, or other peptide tags that have high-affinity interaction with bead or other support 
structures) is one such avenue, though these stringent washes often result in decreased yields 
(Helwak et al., 2013; Moore et al., 2015). An appealing alternative approach as described in the 
qCLASH method is simply to remove the SDS-PAGE and nitrocellulose transfer steps (Gay et al., 
2018). However, this modification will lead to at least some inclusion of additional background 
signal from non-crosslinked RNA or protein-crosslinked RNA outside of the excised membrane 
region in with-gel experiments, and to what degree this alteration increases background, 
particularly among potential post-lysis interactions, was not fully explored. To explore this, we 
performed a variety of analyses to compare both signal and background observed in no-gel 
versus with-gel chimeric eCLIP in HEK293T cells, and observed that no-gel chimeric AGO2 eCLIP 
recovered both non-chimeric peaks as well as chimeric reads that had similar enrichment for 3' 
UTR and miRNA seed sequence motifs compared to with-gel chimeric eCLIP. Further, we 
observed an increased recovery of unique cDNA fragments (measured as a decrease in required 
PCR amplification), making no-gel chimeric eCLIP a robust and scalable way to generate miRNA 
interactome maps.  

 
Enrichment of miRNA or gene of interest by PCR or probe-based capture 
 
The first discovered microRNA (lin-4) was initially characterized for its key role in C. elegans 
development (Chalfie et al., 1981), and since then individual microRNAs have been shown to play 
critical roles in cancer (Peng and Croce, 2016), stem cell self-renewal and differentiation 
(Gangaraju and Lin, 2009), and obesity and insulin homeostasis (Ying et al., 2017) among 
numerous other diseases, as well as serve as potential therapeutics (Rupaimoole and Slack, 
2017). Thus, deep profiling of regulatory maps for individual miRNAs is needed to study the 
molecular mechanisms of how miRNA regulation alters physiology and disease. However, as the 
recovery of chimeras per miRNA was still correlated to miRNA abundance, even with the 
increased number of unique (non-PCR duplicate) fragments in no-gel chimeric eCLIP the 
necessary sequencing to generate robust maps for a miRNA of interest would be cost-prohibitive 
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for most miRNAs. Thus, a method to specifically enrich the sequenced library for individual 
miRNAs of interest would enable us to make full use of this improved yield by allowing deeper 
profiling for biologically relevant miRNAs in a particular cell line or tissue system under study. 
Further, enrichment for reads at least 40 nt in length (thus potentially containing both a miRNA of 
interest and a fragment of target RNA of mappable length (>18nt)) could provide further 
enrichment for chimeras specifically. 
 
PCR-based enrichment has long been used for targeted genomic sequencing approaches 
(Tewhey et al., 2009), and has the advantage of experimental simplicity. The most straightforward 
such approach to enrich for desired miRNA-containing fragments is to simply utilize a two-step 
PCR process, with the first step utilizing a PCR primer within the miRNA of interest, followed by 
a second round of PCR to incorporate full sequencing adapters. We found that this could be easily 
adapted to targeted amplification of chimeric eCLIP libraries, and successfully enabled selective 
enrichment for miRNAs of interest while only requiring the purchase of a single additional PCR 
primer per miRNA. However, although PCR enrichment is an easy way to allow for in-depth 
profiling of miRNA targets, the nature of using PCR introduces limitations. First, many mammalian 
miRNAs have extremely high or low GC content, making design of primers with reasonable 
melting temperatures challenging. Next, because of the use of a primer targeted to the miRNA, 
the final reads reflect amplified products and have lost the original miRNA sequence present in 
the miRNA:mRNA chimeric molecule, leading to loss of information about differential targeting of 
miRNA family members (which often only contain a single nucleotide difference), and isomiRs or 
other variations which have been described to play key roles in the processing and function of 
microRNAs (Ameres and Zamore, 2013; Cloonan et al., 2011). Additionally, false-positive 
chimeras can be introduced due to the PCR primer annealing to similar sequences elsewhere in 
the transcriptome. 
 
To address this limitation, we leveraged hybrid capture enrichment as an alternative that 
preserves the native miRNA and target sequence. Enrichment of desired regions by annealing 
biotin- or surface-attached antisense oligonucleotide probes followed by stringent washing was a 
key advance in the development of whole-exome and other targeted genome sequencing 
approaches (Hodges et al., 2007; Okou et al., 2007). We found that hybrid capture is adaptable 
to the eCLIP procedure at the post RNA adapter-ligation stage by annealing to commercially 
synthesized biotinylated DNA oligonucleotides followed by capture on standard streptavidin 
beads, light washes, and recovery of enriched RNA by DNase treatment. For miRNA-targeted 
enrichment, we initially designed probes to include multiple copies of the same miRNA to obtain 
higher yield, but found that concatamers of distinct miRNAs could also be used to enrich for 
multiple miRNAs simultaneously. Similarly, we designed probes antisense to transcript 3' UTR 
regions and observed that this could also enrich for chimeric miRNA:mRNA reads that deeply 
profile a gene of interest. These approaches allow an unparalleled ability to deeply map candidate 
miRNA interactions for either a miRNA or gene of interest. 
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Results 
 
Chimeric eCLIP recovers miRNA:mRNA chimeras 
 
To confirm that chimeric eCLIP successfully recovers chimeric miRNA:target reads in a manner 
similar to prior CLASH approaches, we performed chimeric eCLIP on HEK293T cells using an 
AGO2 antibody previously validated for CLIP (Sternburg et al., 2018) and the additional 3'  
phosphatase minus T4 PNK and no-adapter ligation steps described above along with standard 
eCLIP immunoprecipitation, adapter ligation, SDS-PAGE electrophoresis, nitrocellulose 
membrane transfer and RNA isolation, reverse transcription, and PCR amplification (Fig. 1A) (see 
Methods). IP-western blotting indicated successful immunoprecipitation of AGO2 (Sup. Fig. 1A), 
and visualization using a biotin on the RNA adapter indicated pulldown of crosslinked RNA that 
resolved to the AGO2 size in high RNase conditions (Sup. Fig. 1B). To confirm that we 
successfully enriched for AGO2 interactions, we first performed standard (non-chimeric) CLIP 
analysis, including adapter trimming, repetitive element removal, genomic mapping, PCR 
duplicate removal, and peak calling (see Methods). In replicate experiments sequenced to 144 
and 145 million reads respectively, an average of 57.6% of peaks significantly enriched in IP 
versus paired input were in 3' UTRs (11,282 out of 20,038 total and 10,502 out of 17,819 total in 
each replicate respectively), with another 17.4% (4,024 and 2,633 in two replicates, respectively) 
in coding sequence (CDS) (Fig. 1B). Although only an average of 2.9% of peaks overlapped 
microRNAs due to their limited number, weighting peaks by information content in IP versus input 
revealed that an average of 38.8% of total peak information was at microRNAs, confirming 
substantial enrichment (Fig. 1C). Our results indicate successful enrichment of both miRNAs and 
putative targets in 3' UTR and CDS regions with AGO2 eCLIP. 
 
Next, we developed an analysis workflow to identify chimeric reads based on a previously 
published ‘reverse mapping’ strategy (Moore et al., 2015). Although we started with all annotated 
miRNAs in miRbase, as part of this process we removed 15 miRNAs from analysis (corresponding 
to an average of 35% of potential chimeras) because both the miRNA and chimeric fragments 
mapped to rRNA, suggesting they likely represent annotation errors rather than true miRNAs 
(Supplementary Table 1). Confirming the ability of eCLIP to improve the recovery of unique (non-
PCR duplicate) fragments, for the two replicates we identified a total of 403,532 and 428,936 
unique chimeric reads (2.5% and 2.5% of uniquely mapped deduplicated reads, or 0.28% and 
0.30% of 144 and 145×106 initial sequenced reads respectively for the two replicates), including 
132,801 and 146,966 3' UTR chimeras (Fig. 1D), a dramatic increase over non-chimeric eCLIP 
or prior chimeric CLIP approaches. We observed high correlation between miRNA-only and both 
miRNA:chimera reads and independent small RNA-seq (Sup. Fig. 1C-E), consistent with previous 
chimeric CLIP methods (Moore et al., 2015). Separating chimeras by miRNA, these experiments 
yielded ~7,000 to ~36,000 chimeric reads per miRNA for the top 10 identified miRNAs, rapidly 
declining to less than 1,000 chimeric reads for the 63rd most abundant miRNA (Fig. 1E). Notably, 
the six miRNAs processed from the mir-17-92 polycistronic cluster (He et al., 2005) were the six 
miRNAs with the most chimeric reads: the most abundant miRNA was miR-17-5p, which has 
previously been shown to regulate cell cycle progression in 293T cells (Cloonan et al., 2008), 
while miR-20a-5p, miR-92a-5p, miR-19b-3p, miR-18a-5p, and miR-19a-3p were second through 
sixth most abundant. In the top 25 miRNAs were also three miRNAs from the mir-106b-25 cluster, 
of which two (miR-106b-5p and miR-93-5p) share seed sequence with miR-17-5p and a third 
(miR-25-3p) shares seed sequence with miR-92a-3p. miR-25 was also proposed to be involved 
in the regulation of cancer (Sarkozy et al., 2018), suggesting that the most abundantly recovered 
miRNAs likely reflect important functional regulatory RNAs.  
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To confirm whether chimeric reads likely reflect true miRNA targets, we considered a variety of 
properties. First, we utilized the CLIPper algorithm (Lovci et al., 2013) to find clusters of chimeric 
reads for the 20 miRNAs with the greatest number of chimeric reads, identifying 15,222 and 
15,805 chimeric clusters in two replicates, respectively. Motif analysis indicated that for the top 
20 miRNAs an average of 58.7% of clusters contained 6-mers complementary to the cognate 
miRNA 6-mer seed region in positions [2:7] (versus an average of 1.7% for non-seed 6-mers), 
and for 19 of the top 20 the miRNA seed was the most commonly observed 6-mer (Fig. 1F). With 
a more conservative threshold for clusters (CLIPper p≤10-5) this was further increased to 68.4% 
of clusters containing the miRNA 6-mer seed (versus 3.5% for non-seed k-mers), albeit with a low 
number of clusters for some miRNAs (Fig. 1F). One exception, miR-4284, had chimeras that 
predominantly mapped to mitochondrial transcripts and lacked seed matches, suggesting that this 
may not reflect a bona fide microRNA in 293T cells. Next, location analysis of chimeric read 
alignments again indicated an enrichment for expected target regions except for miR-4284, with 
an average of 33% of chimeric reads mapped to 3' UTRs and additional 21% to CDS (Fig. 1G). 
Thus, these results suggest that the properties of chimeric reads obtained with chimeric eCLIP 
modifications are consistent with previous chimeric CLIP-seq approaches.  
 
 
No-gel chimeric eCLIP increases depth of miRNA chimeras recovered 
 
The standard eCLIP protocol that chimeric eCLIP is based on includes SDS-PAGE protein gel 
electrophoresis, Western blot-like nitrocellulose membrane transfer, and manual cutting of the 
membrane to isolate protein-crosslinked RNA. These steps are performed for two purposes: first, 
non-crosslinked RNA does not transfer to nitrocellulose and is thus removed (Grosswendt et al., 
2014), and second, denaturation allows removal of RNA crosslinked to co-immunoprecipitated 
unwanted proteins of different sizes than the targeted protein. However, in addition to being 
complex for novice users and limiting scalability and automated handling, we and others have 
observed that this transfer and isolation step by itself drives a dramatic reduction in experimental 
yield, and multiple recent modified RBP immunoprecipitation protocols have been described 
which leave out this step (Gay et al., 2018; Ilik et al., 2020; Patton et al., 2020). As our experience 
with other RBPs suggested that co-immunoprecipitation artifacts were heavily protein- and 
antibody- dependent, we set out to rigorously test whether removing these steps altered the 
composition of chimeric eCLIP-reads. To do this, we tested a simplified protocol that removes the 
SDS-PAGE and membrane transfer steps and replaces it with a simple Proteinase K treatment 
to isolate the crosslinked RNA (“no-gel” variant of chimeric eCLIP, Fig. 2A). We observed that 
removal of the gel transfer steps required on average 6.3 fewer PCR cycles of amplification, 
suggesting a >70-fold increased experimental yield (Fig. 2B). Using previous estimates of 
conversion of eCT to non-PCR duplicate reads (Van Nostrand et al., 2020a), this suggests that 
no-gel AGO2 eCLIP recovers billions of unique RNA fragments.  
 
To query whether the no-gel approach faithfully recapitulated with-gel targets, we first considered 
the frequency of miRNA-only (non-chimeric) and miRNA-containing (chimeric) reads. We 
observed a high correlation between with-gel and no-gel approaches for both miRNA-only 
(Pearson correlation 0.950, P.Value < 2.2•10-16) (Sup. Fig. 2A) and miRNA-chimeric read counts 
(Pearson correlation 0.953, P.Value < 2.2•10-16 ) (Fig. 2C). Additionally, the correlation between 
miRNA non-chimeric and chimeric read counts within an experiment was similar between with-
gel (R = 0.87 and R = 0.85, p  < 6.1•10-183 and  < 9.2•10-182) (Sup. Fig. 1B-C) and no-gel variants 
(Pearson R = 0.78 & R = 0.81, p < 3.8•10-145  and < 3.9•10-165 for replicate 1 and 2 respectively) 
(Sup. Fig. 2B-C)). These results suggest that the no-gel approach does not alter the observed 
pattern of miRNA enrichment. However, we did note that information at non-chimeric peaks 
overlapping miRNAs (as well as the frequency of miRNA-only reads generally) was higher in the 
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no-gel experiments (Sup. Fig. 2D), and we replicated this observation even when explicitly size-
separating large (>30nt) and small (<30) library fractions (Sup. Fig. 2E), suggesting that miRNAs 
might have lower efficiency of UV crosslinking to AGO2 than target regions due to their smaller 
size and location buried within AGO2, leading to decreased recovery in with-gel approaches that 
include denaturing steps that would remove non-crosslinked miRNAs. 
 
Next, we considered candidate interactions, defined from both non-chimeric as well as chimeric 
analyses. Manual inspection suggested similar read density distributions of non-chimeric as well 
as chimeric eCLIP reads between with-gel and no-gel libraries at many significantly enriched 
peaks (Fig. 2D). Expanding this analysis transcriptome-wide among non-chimeric reads, we 
observed a high correlation in IP versus input enrichment between with-gel and no-gel libraries 
considering either all 250,339 clusters identified by CLIPper in the no-gel libraries (Pearson 
correlation 0.72, P.Value < 2.2•10-16) (Fig. 2E) or all 353,280 clusters identified in the with-gel 
libraries (Pearson correlation 0.80, P.Value < 2.2•10-16) (Sup. Fig. 2F), suggesting that no-gel 
chimeric eCLIP generally recapitulates with-gel enrichments (with clusters at miRNA loci showing 
higher enrichment due to the increased frequency of miRNA-only reads noted above). The 
enrichment for 3' UTR and CDS regions and increase in frequency of seed matching k-mers was 
also preserved between with-gel and no-gel chimeric reads. Analysis of clusters identified from 
no-gel chimeric reads for the most abundant 20 miRNAs showed an average of 60.0% containing 
the miRNA seed match relative to an average of 2.5% for non-seed 6-mers. The miRNA position 
2-7 seed match was the most commonly found 6-mer for 16 of the 20 miRNAs (Fig. 2F), and the 
percent of clusters containing the seed match was consistent between with- and no-gel 
experiments (Sup. Fig. 2G). Similarly, we observed high frequencies of 3' UTR coverage for non-
chimeric peaks (33.6% and 36.5% for replicates 1 and 2 respectively) (Sup. Fig. 2H), chimeric 
reads (18.8% and 21.1%) (Fig. 2G), and clusters called from all chimeric reads (31.5% and 34.1%) 
(Fig. 2H, Sup. Fig. 2I) in no-gel libraries as with-gel libraries. Similar results were seen considering 
no-gel chimeric reads for the most abundant 20 miRNAs individually (Sup. Fig. 2J). These results 
indicate that no-gel chimeric eCLIP is maintaining robust recovery of miRNA targets. 
 
One distinction between the no-gel and with-gel experiments was increased signal in non-mRNA 
regions, particularly non-coding transcripts (where the percent of chimeric reads doubled from 
15.4% and 14.8% to 31.7% and 29.0%) (Fig. 2G). The effect on the number of chimeric clusters 
was far less dramatic, with only slight increases for non-coding transcripts (average 4.7% in with-
gel to 7.4% in no-gel) and intronic (average 16.4% of with-gel to 19.3% of no-gel clusters) (Fig. 
2H and Sup. Fig. 2I). Although previous AGO2 CLIP and chimeric CLIP studies have sometimes 
yielded a significant number of peaks in introns or linked to rRNA, tRNA, or other non-coding 
RNAs (Chu et al., 2021; Helwak et al., 2013), the particular emergence of non-coding signal only 
in no-gel experiments here suggests that it likely represents false positive signal. Previous CLASH 
studies utilizing spike-ins of E. coli RNA and Drosophila S2 cells (Moore et al., 2015) or yeast 
lysate (Helwak et al., 2013) into human cell lysate estimated a low (1-5%) rate of interactions 
formed in vitro after cell lysis. However, recent work performing in vitro RNA binding assays using 
pre-formed miRNA-loaded Argonaute complexes has shown that these complexes readily bind 
RNA with similar targeting principles as in vivo-identified miRNA targets (Becker et al., 2019; 
McGeary et al., 2019), suggesting that it would not be surprising that such post-lysis interactions 
could occur.  
 
To query this we performed chimeric eCLIP upon mixing of human (H; HEK293T) and rat (R; C6) 
cell lysates (Fig. 2I). Although the sequence similarity between human and rat means that only a 
subset of chimeric reads can be uniquely resolved, the cross-reactivity of the AGO2 antibody for 
successful IP of AGO2 protein in rat (Sup. Fig. 2K-L) enabled us to perform chimeric eCLIP in 
both species simultaneously, validating that both samples were optimally fragmented for 
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successful ligation and incorporation into chimeric reads that had similar enrichment for 3' UTR 
regions (with a higher intergenic fraction likely driven by less accurate bioinformatic removal of 
rRNA and other repetitive elements as well as poorer annotation of non-coding transcripts) (Sup. 
Fig. 2M-N). Next, using 3 paired human- versus rat-only with-gel chimeric eCLIP samples we 
identified 108 human-enriched and 28 rat-enriched miRNAs with at least 10-fold differential 
expression (Sup. Fig. 2O). Independent no-gel experiments showed similar sample-specific 
expression for these miRNAs, whereas intermediate miRNA frequencies were observed in mixed 
lysate samples (Sup. Fig. 2O). Next, we isolated species-specific chimeric fragments by 
discarding chimeras that mapped equally well to human and rat, identifying thousands which were 
chimeric for a human-specific microRNA and were uniquely aligned to either the human or rat 
transcriptomes (including exons and introns for all protein-coding genes) (Sup. Fig. 2P). We 
observed that in with-gel experiments, an average of 8.6% of human miRNA chimeras aligned to 
rat in human-rat mixtures, whereas only 1.2% were observed in human-only experiments 
(reflecting the baseline mapping error rate) (Fig. 2J, Sup. Fig. 2P). This rate was slightly increased 
in no-gel human-rat mixture experiments, where 12.1% of human miRNA chimeric regions aligned 
to rat (Fig. 2J). Similar rates were observed if only 3' UTR-mapping chimeras were considered 
(Sup. Fig. 2Q). To query whether this was driven by post-lysis interactions of miR:AGO2 
complexes or simply cross-ligation of nearby RNAs due to crowding of the beads, we compared 
the false-positive rate in high (≥10 million cells per 100 uL of beads) and low (≤1.5 million cells 
per 100 uL of beads), and observed a trend towards decreased rates with increased dilution, with 
diluted ligation decreasing the false-positive rate from 10.7% to 7.5% in with-gel and 15.3% to 
10.0% in no-gel (Fig. 2K). Although this did not reach significance, we utilized this lower ratio for 
the experiments described above and all probe capture experiments below as it suggested that 
some fraction of these artifacts might be due to on-bead crowding. As the half of potential post-
lysis interactions that pair a human miRNA with human target sequence are undetectable by these 
lysate mixing approaches, these results suggest that a substantial rate of false positives are 
present even in standard with-gel chimeric approaches and are moderately increased in the no-
gel approach. This may explain the significant number of rRNA and other non-coding RNA 
chimeras often seen for many miRNAs in our and prior chimeric CLIP studies (Helwak et al., 
2013), and provides further evidence that (as with any immunoprecipitation-based protocol) it is 
important to validate chimeric CLIP-based miRNA interactions with orthogonal approaches (see 
further discussion in transfection section below).  
 
Targeted enrichment of miRNA chimeras by PCR  
 
As noted above, the number of per-miRNA chimeric reads in total chimeric eCLIP correlates with 
non-chimeric miRNA abundance (Sup Fig. 1C-D, Sup Fig. 2B-C), leading to low coverage beyond 
the first few miRNAs (Fig. 1E). As standard sequencing depth of with-gel chimeric eCLIP often 
saturated sequencing of non-PCR duplicate reads, there would be no benefit to deeper 
sequencing or miRNA-targeted enrichment. However, the ~70-fold improved yield in the no-gel 
variant (Fig. 2B) suggested that deeper profiling of individual miRNA interactomes might now be 
achievable. To apply chimeric-eCLIP to directly profile individual miRNAs that were not 
adequately captured using total chimeric using targeted PCR amplification, we altered the 
standard PCR amplification in chimeric eCLIP to a two-step approach which first utilizes one 
universal primer and one primer targeting the miRNA of interest, followed by a second PCR with 
multiplexing sequencing primers (Fig. 3A). By requiring that this PCR yields at least a 40 nt insert 
(reflecting miRNA plus 18 nt of additional sequence), this approach allows enrichment not only of 
a miRNA of interest but also provides selection of chimeric rather than miRNA- or mRNA-only 
fragments. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.13.480296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.13.480296
http://creativecommons.org/licenses/by/4.0/


To test this approach, we performed PCR-enriched miRNA targeted no-gel chimeric-eCLIP on 
the most abundant 94 miRNAs in chimeric eCLIP in HEK293T cells, paired with a separate 
standard (non-selected) with-gel chimeric eCLIP. Sequencing to an average of 7.8 million reads 
per miRNA library, we obtained at least 100,000 chimeras for 89 of the 94 targeted miRNAs; 
extrapolating sequencing the non-enriched library to similar total depth (~736 million reads) would 
yield 100,000 chimeras for only the most abundant 32 (Fig. 3B). Moreover, if one were interested 
in an individual miRNA, this approach increased the fraction of uniquely mapped chimeric reads 
from an average of 0.02% to 4.0% (a 175-fold increase) (Sup. Fig. 3A), which could likely be 
further improved by optimization of PCR amplification conditions. This leads to an increase in 
identified clusters (Sup. Fig. 3B), and a dramatic drop in required sequencing, as for example 
miR-25-3p went from 12,045 chimeric reads (out of 50.4 million) in total chimeric eCLIP to 253,151 
(out of 9.0 million) in PCR-enriched chimeric eCLIP. For miR-25-3p, cluster identification on these 
chimeric reads yielded 2,877 significant clusters (CLIPper p ≤ 10-5). These clusters showed high 
enrichment for 3' UTR (30.4%) and CDS (34.8%) regions (Fig. 3C), and motif analysis indicated 
that 46.0% of clusters contained the canonical miR-25 seed sequence (complementary to miR-
25 positions 2-7) (Fig. 3D). Expanding to all 94 miRs showed a similar annotation distribution, 
with average 39.9% 3' UTR and 31.9% CDS clusters (Sup. Fig. 3C), and the 2-7 seed match 
sequence was the most abundant 6-mer for 21 (and in the top 10 for 47) out of the 94 profiled 
miRNAs (Fig. 3E).  
 
However, we noted that many datasets also showed strong enrichment for the 6-mer at the end 
of the PCR primer (Fig. 3E), and manual inspection confirmed that these regions often contained 
stretches of homology to the miRNA that likely cause mis-priming of the PCR primer. Thus, 
although PCR-based enrichment can successfully yield deep profiling for some miRNAs, these 
primer-specific artifacts require careful consideration during analysis. To experimentally avoid 
these artifacts, we developed an alternative non-PCR based approach described below. 
However, we also hypothesized that as these artifacts were due to the miRNA-specific primer 
amplifying non-chimeric fragments, the false-positive clusters would likely be created in regions 
that were not enriched in the non-chimeric AGO2 eCLIP analysis. Consistent with this, motif 
analysis performed only on PCR-enriched clusters that overlapped reproducible AGO2 eCLIP 
peaks indicated that 70 of the 94 had an increase in the percent of clusters with the miRNA 2-7 
seed match and 80 of the 94 had a decrease in the 6-mer at the 3' end of the primer (Sup. Fig. 
3D-E), suggesting that overlapping PCR-enriched datasets with standard AGO2 peaks can help 
remove false-positive signal and can help enable identification of which miRNA is causing a 
putative AGO2 interaction.  
 
Targeted enrichment of miRNA chimeras by probe-capture 
 
As discussed in Design above, while PCR enrichment is an easy way to allow for in-depth profiling 
of miRNA targets, the replacement of the actual RNA fragment sequence with the primer 
sequence in the final read (and subsequent loss of information about related miRNAs, including 
miRNA family members which often only contain a single nucleotide difference, and miRNA 5' 
ends) represents a clear limitation. Further, our results above suggested that PCR amplification 
artifacts could be a common source of false positives.  
 
To address these concerns, we tested a probe-capture enrichment technique with modified 
oligonucleotides to increase the depth of chimeric read enrichment (Fig. 4A). First, we tested 
specificity of enrichment of chimeric reads for miRNAs of interest in HEK293T cells, choosing five 
miRNAs of interest (miR-221-3p, miR-34a-5p, miR-186-5p, miR-21-5p and miR-222-3p) that span 
a range of miRNA abundances from 14th to 56th most highly expressed miRNA in HEK293T 
(according to small RNA-seq profiling, Supplementary Table 2). We applied chimeric eCLIP to 
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enrich libraries for chimeras of these miRNAs and compared it to libraries generated using with-
gel chimeric eCLIP without enrichment. Probe capture-enriched chimeric eCLIP revealed unique 
targeting by the distinct miRNAs (Fig. 4B), and successfully enriched chimeras for each of the 
targeted miRNAs by more than 19-fold (Fig. 4C). The frequency of chimeras for the targeted 
miRNAs was increased from 0.01% to 0.48% of sequenced reads (Fig. 4D) resulting in a more 
than a 12-fold increase in the number of genes with reproducible 3' UTR clusters (Fig. 4E). Out 
of all identified chimeras, the 5 targeted miRNAs went from 4.9% in standard chimeric eCLIP to 
93.6% in the enriched pool (Fig. 4F), indicating a high specificity in recovering the desired 
miRNAs. Of note, we observed from 25,441 to 205,723 chimeric reads for each of the enriched 
miRNAs (Fig. 4C); achieving 25,000 chimeric reads for each would have required sequencing the 
non-enriched with-gel chimeric library 35-fold deeper (assuming there were sufficient non-PCR 
duplicates to make this possible). Clusters identified from these chimeric reads showed specific 
enrichment for the miRNA seed sequence (Fig. 4G), indicating a high signal-to-noise in identifying 
candidate miRNA targets. 
 
Probe-capture chimeric-eCLIP can enrich for entire miRNA families while preserving the exact 
sequence of the specific miRNA bound to each target mRNA, enabling deep profiling of miRNA 
families with highly related sequences. Since many investigators are interested in studying 
families of miRNAs, we next tested whether probe capture could enable enrichment and 
subsequent separation of chimeric reads for members of the same miRNA family. First, we 
targeted six members of the miR-17 family that share the same seed sequence (miR-17-5p, miR-
93-5p, miR-20a-5p, miR-20b-5p, miR-106a-5p, miR-106b-5p) along with two miRNAs with related 
seed sites (miR-18a-5p, miR-18b-5p). This included two miRNAs (miR-17-5p and miR-20a-5p) 
that were highly over-represented among chimeric reads (Fig. 1E) as well as in small RNA-seq in 
HEK293T (Supplementary Table 2), and three miRNAs (miR-20b-5p, miR-106a-5p and miR-18b-
5p) that were ranked outside of the 80 most abundant miRNAs by chimeric frequency and outside 
the 200 most abundant miRNAs in small RNA-seq. Even though miRNAs that were selected in 
the miR-17 family experiment accounted for an average of 26.3% of total chimeric reads without 
enrichment, probe capture further increased representation of the selected miRNAs by 3.8-fold to 
98.9% of chimeric reads and by 32.4-fold among all sequenced reads (from 0.07% to 2.4%) (Sup. 
Fig. 4A-C). Next, we designed probes against 2 members of the let-7 family (let-7a-5p and let-7g-
5p) along with two unrelated miRNAs (miR-26a-5p and miR-26b-5p). Chimeric reads for the 
targeted miRNAs in the let-7 family experiment were less common, accounting for only 0.01% 
before enrichment but increasing 49.4-fold to to 0.4% following enrichment, with an increase from 
3.2% of chimeric reads without enrichment to 82.2% after enrichment (Fig. 4F,H-I). We note that 
although other non-targeted let-7 members were also enriched, they were distinguishable by 
sequencing (Fig. 4H). Again, the increased read coverage led to a dramatic increase in the 
number of reproducible 3' UTR clusters observed for the targeted miRNAs (Sup. Fig. 4D-E). In 
each case, clusters identified from chimeric reads showed specific enrichment for sequences 
matching the seed region of the cognate miRNA (Fig. 4J, Sup. Fig. 4F), indicating that the more 
extensive set of probe-enriched targets retains the high signal-to-noise observed for non-enriched 
no-gel chimeric eCLIP (Fig. 2E). 
 
Finally, we tested chimeric CLIP with probe capture enrichment of miRNA:mRNA chimeras in 
mouse liver tissue. Two sets of enriched libraries were prepared, one enriched for a selection of 
five miRNAs (miR-26a-5p, miR-21a-5p, let-7a-5p, let-7c-5p, let-7f-5p) and another enriched 
specifically for miR-122-5p. As above, probe-based enrichment further increased representation 
of chimeras for miRNAs of interest among chimeric reads, going from 9.6% to 69.2% of chimeras 
and from 0.2% to 6.4% of total reads for the 5-miRNA pool (Fig. 4F,K-L) and from 34.2% to 66.6% 
of chimeras and from 0.8% to 5.9% of total reads for miR-122-5p (Sup. Fig. 4G-I). As before, the 
number of clusters was dramatically increased in probe-capture experiments (Sup. Fig. 4J-K), 
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and seed matching sites for miRNAs were over-represented in clusters called from chimeric reads 
(Sup. Fig. 4L-M). In summary, probe-enriched chimeric eCLIP libraries enable profiling of 
hundreds of thousands to several million chimeric reads per miRNAs of interest, allowing deep 
recovery of interactions for a miRNA of interest at substantially decreased sequencing depth. 
 
Profiling of miRNAs targeting a gene of interest 
 
In addition to focused profiling of genes targeted by miRNAs of interest, it is increasingly important 
to identify miRNAs that target a specific gene of interest. To do this, we generated enrichment 
probes complementary to a gene of interest by ordering dsDNA gene fragments and performing 
T7 transcription with biotinylated nucleotides (see Methods), and performed capture of no-gel 
chimeric eCLIP cDNA as described above for miRNA-specific probes. As a proof of concept, we 
tested capture of two 3' UTR regions: Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and 
Amlyoid Beta Precursor Protein (APP). Although the frequency of chimeric reads obtained for a 
gene of interest was lower than for probe-capture enrichment of miRNAs, we observed 358-fold 
and 61-fold increased representation of chimeric reads for the gene of interest for ULK1 and APP 
enrichment respectively, going from less than 200 chimeric reads (out of 144 and 145 million 
sequenced reads) to over 1000 (out of less than 20 million reads) (Fig. 5A-B). 
 
Despite differences in chimeric read abundance with and without enrichment, counts of chimeric 
reads per miRNA were highly correlated between gene-enriched (no-gel) chimeric eCLIP and 
matched with-gel non-enriched chimeric eCLIP (Pearson correlation 0.65 and 0.75 for ULK1 and 
APP respectively) (Fig. 5C-D), indicating that the probe enrichment did not dramatically bias 
miRNA representation among gene specific chimeras. Upon visual inspection, we observed that 
individual target sites were well separated from each other, identifying numerous putative miRNA 
target sites in 3' UTRs of ULK1 and APP (Fig. 5E-F). As expected, these sites commonly 
overlapped sequences complementary to the miRNA seed region. Notably, different miRNAs with 
the same or related seed sequences often (but not always) showed similar patterns of enrichment 
(Fig. 5E-F), reflecting the ability of probe capture enrichment to separate interactions of highly 
related miRNAs.  
 
miRNA:mRNA chimeras identify functional miRNA targets 
 
As microRNAs often regulate gene expression by inducing RNA degradation, a common way to 
validate miRNA targets at scale is to show downregulation following miRNA overexpression (Lim 
et al., 2005).  Indeed, targets identified using CLASH or similar chimeric ligation approaches 
showed enrichment for miRNA-dependent changes in RNA decay and specific functional 
categories, confirming that these methods yield high-quality sets of miRNA targets (Moore et al., 
2015). To confirm that chimeric eCLIP also identifies functional miRNA targets, we chose two 
miRNAs with low endogenous expression in HEK293T cells (miR-1 and miR-124, ranked 65th and 
265th most expressed miRNAs respectively (Supplementary Table 2) that have previously been 
used to study miRNA overexpression (Lim et al., 2005) and performed overexpression followed 
by small RNA-seq to confirm miRNA expression, mRNA-seq to assess the effect of miRNA 
overexpression on global gene expression, and chimeric eCLIP to identify targets (Fig. 6A).  
 
Both small RNA-seq and total chimeric eCLIP confirmed reproducible and specific enrichment of 
the overexpressed miRNA (Sup. Fig. 6A-C) as well as incorporation into mRNA-bound AGO2 
(Sup. Fig. 6D-E), with both miR-1 and miR-124 showing dramatic up-regulation in both small 
RNA-seq (average 423- and 331-fold respectively versus mock transfection) and chimeric eCLIP 
(48,021- and 1,239-fold respectively) (Fig. 6B-C). Interestingly, although miR-1 was more 
abundant after over-expression in small RNA-seq (contributing more than 66% of reads (Fig. 6B)), 
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miR-124 was more frequent in chimeras (more than 35% (Fig. 6C)), suggesting that the miR-124 
mimic may be more easily incorporated into functional AGO2 complexes. Next, we used DESeq2 
(Love et al., 2014) to quantify differential gene expression upon miRNA overexpression (Sup. Fig. 
6F). Confirming that transfection of miR-1 and miR-124 mimics successfully induced repression 
of miR-1 and miR-124 targets respectively, 3' UTRs of downregulated genes contained miR-1 
and miR-124 seed matches more often than 3' UTRs of upregulated genes (Sup. Fig. 6G), and 
genes containing complemented seed sites in 3' UTRs showed the strongest shift towards gene 
repression for the two transfected miRNAs (Fig. 6D and Sup. Fig. 6H), consistent with prior 
observations (Lim et al., 2005).  
 
To identify reproducible targets for miR-124 and miR-1, we first called clusters using miR-124 and 
miR-1 chimeric reads in each of the two replicates, and then used a modified IDR pipeline to 
identify reproducible clusters, which identified 549 miR-124 and 44 miR-1 3' UTR clusters (Fig. 
6E). We observed a significant shift towards decreased expression for the 484 and 42 genes 
containing at least 1 chimeric 3' UTR cluster for miR-124 and miR-1, respectively (p = 2.9×10-82 
and p = 1.3×10-18 by two-tailed Kolmogorov-Smirnov test) (Fig. 6F, Sup. Fig. 6I). The magnitude 
of repression generally increased among chimeric eCLIP targets when more chimeric reads were 
identified (RPMC≥0, ≥100, or ≥200 chimeric reads per cluster), suggesting that the count of 
chimeric reads per target provides a metric that correlates with the regulatory impact of a particular 
miRNA:mRNA interaction.  
 
To more deeply profile miR-1 and miR-124 targets, we additionally performed probe-enriched 
chimeric eCLIP, which expanded the set to 829 miR-124 and 134 miR-1 3' UTR clusters (Fig. 6E). 
The 704 and 125 genes with probe-enriched 3' UTR clusters for both miR-124 and miR-1 showed 
enrichment for decreased expression upon miR over-expression (p = 9.1×10-102 and p = 5.4×10-

32 respectively) (Fig. 6F, Sup. Fig. 6I). Moreover, genes (172 for miR-124 and 107 for miR-1) with 
reproducible chimeric clusters by probe capture but not identified in total chimeric still showed a 
significant shift towards repression upon miRNA over-expression (p = 1.1×10-31 and p = 1.3×10-

23 respectively), which was only marginally less than those (140 for miR-124 and 18 for miR-1) 
detected by both methods (Sup. Fig. 6J-K), suggesting that the additional candidate targets 
recovered by deeper probe capture profiling remain enriched for functional miR targets.  
 
Next, we compared these results against TargetScan (v 7.2) computationally predicted targets 
(Agarwal et al., 2015). TargetScan-predicted targets were more numerous than genes with 
chimeric eCLIP clusters and showed significant repression upon miRNA over-expression for both 
miR-124 and miR-1 (Fig. 6F, Sup. Fig. 6I), although the magnitude was more similar to only the 
low-confidence (RPMC≥0 read) chimeric eCLIP set. Notably, we observed that for both genes 
with or lacking TargetScan-predicted miRNA interactions, the subset of genes with chimeric 
eCLIP clusters showed greater repression upon miRNA over-expression (Fig. 6G-H, Sup. Fig. 
6L-M), suggesting that chimeric eCLIP can both refine computationally predicted targets as well 
as reveal new targets not captured by prediction alone. 
 
MicroRNA sites have also been validated in coding sequence (CDS) regions, albeit with typically 
weaker repressive activity (Baek et al., 2008; Grimson et al., 2007). Consistent with these prior 
findings, we observed that the number of CDS clusters was roughly similar to that of 3' UTR 
clusters (Fig. 6E), and that genes with chimeric clusters only in CDS for miR-124 (222) and miR-
1 (113) showed significant repression in miR over-expression (p = 2.5×10-5 and p = 4.9×10-4 
respectively) albeit weaker than repression of genes with 3' UTR only clusters (Fig. 6I, Sup. Fig. 
6N). This decreased effect for CDS targets versus 3' UTR targets is consistent with prior 
observations, although notably for miR-124 the median log2 fold-change for CDS-only chimeric 
targets (-0.089) was approaching the change observed for TargetScan-predicted 3' UTR targets 
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(-0.146) (Fig. 6I). As prediction of CDS targets remains challenging due to the high baseline 
conservation of coding regions, these results suggest that chimeric eCLIP represents a unique 
approach to enable exploration of functional CDS-region targeting by miRNAs. 

 
A resource of chimeric eCLIP data in 293T cells 
 
Overall, the experiments described in our study profiled nearly six million non-PCR duplicate, 
uniquely mapped chimeric reads in HEK293T, including 2.6 million across 6 with-gel and 3.4 
million across 12 no-gel experiments, a dramatic increase over prior chimeric CLIP studies (Fig. 
7A). To further aid the utilization of this resource, we merged these replicates together, yielding 
963,813 and 856,953 3' UTR chimeras for with-gel and no-gel respectively, and performed cluster 
identification for each miRNA with at least 1,000 chimeric reads, enabling identification of 31,494 
putative high-confidence miRNA interaction sites in with-gel and 36,559 in no-gel respectively 
(CLIPper p ≤ 10-5). As expected, coverage remained dependent on miRNA abundance, with miR-
20a-5p and miR-17-5p yielding over 210,000 with-gel and 340,000 no-gel chimeras each; 
however, 46 miRNAs in the merged with-gel and 52 in the merged no-gel had at least 10,000 
chimeras (Fig. 7B, Sup. Fig. 7A). These typically had hundreds to thousands of significant clusters 
located within the 3' UTR or CDS of dozens to over a thousand unique genes (Fig. 7B, Sup. Fig. 
7), and these clusters were enriched for miRNA seed matches as expected, with the miRNA 2-7 
seed being the most frequently observed 6-mer for 44 of the 46 miRNAs (Fig. 7C). Thus, this 
resource represents a unique opportunity to further explore the regulatory roles and networks of 
miRNAs in the well-characterized 293T cell line. 
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Discussion 
 
The experimental identification of miRNA targets with chimeric CLIP-seq approaches provided 
unique insights into the rules for miRNA:target interactions (Broughton et al., 2016; Grosswendt 
et al., 2014; Helwak et al., 2013; Moore et al., 2015). However, the limited yield of non-PCR 
duplicate fragments, coupled with the low number of chimeric reads outside of the most abundant 
miRNAs, has hindered the widescale adoption of this powerful approach. With the ever-increasing 
catalog of miRNAs associated with human disease, coupled with the characterization of small 
RNAs produced by RNA viruses including SARS-CoV-2 that appear to utilize the host miRNA 
regulatory machinery (Pawlica et al., 2021), the ability to deeply profile targets for individual 
miRNAs of particular interest represents a novel opportunity to better understand the biological 
regulatory networks driven by individual microRNAs in a variety of context.  
 
In this work, we describe both PCR- and probe-based strategies for targeted enrichment of a 
miRNA of interest. Although PCR-based enrichment is experimentally simpler and can yield 
robust profiling for many miRNAs, the common amplification of transcriptomic sites with sequence 
complementary to the primer coupled with the fact that the PCR primer replaces the sequence of 
the original miRNA (making it impossible to separate highly similar family members) led us to 
favor the probe-capture approach for general use. Because this approach simply enriches for (but 
does not alter) the original chimeric RNA fragments, it is thus possible to separate chimeras for 
miRNA family members differing only by a single nucleotide in order to reveal novel roles and 
interactions. Indeed, our analysis of miRNAs targeting two individual genes suggested a large 
degree of co-targeting among family members, which may help to explain the robustness of 
miRNA regulatory networks and their resilience to mutations of individual miRNAs in knockout 
experiments (Miska et al., 2007). Although we only performed analysis on annotated miRNAs in 
this work, this property may also enable querying of how alternative miRNA processing alters 
targeting, as recent studies indicated that alternative 3' end tailing in particular can play critical 
roles (Kingston and Bartel, 2019). We note that although in theory this can also enable 
characterization of microRNA 5' end isomiRs, the addition of non-templated nucleotides after 
reverse transcription may complicate this analysis (data not shown), and further work may be 
required to explore this question. 
 
The utilization of an anti-AGO2 antibody to enrich for miRNA interactions has the benefit of 
enabling this approach to be utilized across cell lines and tissues with only limited experimental 
modification (optimization of lysis and RNase fragmentation conditions). However, the 
development of additional approaches, such as more stringent purification of 
AGO2:miRNA:mRNA complexes utilizing a transgenic AGO2:HaloTag fusion, could provide 
further opportunities for optimization and removal of background by enabling denaturing wash 
conditions (Li et al., 2020). In addition to microRNAs, there exist many other small regulatory 
RNAs that play critical roles in regulating RNA processing through interaction with complementary 
sequences, including piRNAs, snoRNAs, and others (Gumienny et al., 2017; Shen et al., 2018). 
Indeed, early CLASH publications showed the utility of the chimeric analysis approach in mapping 
snoRNA interactions in yeast (Kudla et al., 2011) and more recently was utilized to generate an 
extensive catalog of putative snoRNA interactions and reveal novel targets of orphan snoRNAs 
(Gumienny et al., 2017). Similarly, CLASH with PIWI protein has been used to reveal mechanisms 
of piRNA targeting (Shen et al., 2018), and CLASH using E. Coli Hfq to enrich for sRNA-mRNA 
interactions revealed principles of small RNAs in bacteria (Iosub et al., 2020). Thus, although we 
focus this description of chimeric eCLIP on miRNA target identification using immunoprecipitation 
of AGO2, we anticipate that the principles described here in both increasing experimental yield, 
as well as targeted enrichment for individual small RNAs of interest, should similarly enable deep 
profiling of other small RNA interactomes of interest.  
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Limitations 
 
Chimeric eCLIP, like all CLIP-based approaches, attempts to capture interactions as they occur 
in living cells. As such, whether observed interactions are truly occurring in vivo or are instead 
occurring after lysis is a major concern. In a traditional CLIP experiment, the denaturing SDS-
PAGE and nitrocellulose transfer removes non-crosslinked RNA, providing a mechanism for 
removing potential post-lysis interactions. However, the additional chimeric ligation step in 
chimeric CLIP experiments (including with-gel chimeric eCLIP described here) weakens this 
limitation, as only one of the miRNA or target would be required to crosslink. Prior chimeric CLIP 
experiments using spike-in of E. coli, Drosophila, or yeast lysate (Helwak et al., 2013; Moore et 
al., 2015) suggested a low (1-5%) rate of interactions formed in vitro after cell lysis; however, our 
work using fragmentation size-optimized human and rat lysate suggests this rate may be 
substantially higher (up to nearly 20%, once accounting for human-human post-lysis interactions 
that are not quantified by this approach). Thus, although it is always beneficial to validate CLIP-
identified candidate interactions with orthogonal information (e.g., identifying overlap with in vitro 
motifs or regulation upon miRNA or RNA binding protein over-expression or knockdown), such 
orthogonal validation is particularly important if one wants robust confidence in individual 
microRNA targets identified by chimeric CLIP. Requiring crosslinking of both miRNA and mRNA 
target would reduce post-lysis interactions, but low efficiency of UV crosslinking currently limits 
such efforts (Moore et al., 2015). However, it is possible that this may be alleviated with improved 
crosslinking efficiency and the ability to utilize optimized denaturing wash conditions for Halo or 
other tag-based approaches. 
 
Although we performed validation with miRNA overexpression, the high level of over-expression 
may not represent native miRNA targeting as recent studies have suggested that limited 
abundance of AGO2 itself may drive competition between miRNAs for proper loading and function 
(Khan et al., 2009; Tan et al., 2019). Further, while the PCR- and probe-based enrichment 
approaches described here enable deeper profiling of miRNAs of interest, the efficiency of these 
methods does remain constrained by both sequence properties of the miRNA or gene of interest, 
as well as the baseline expression level. Thus, in the implementation we describe here we do not 
directly address the stoichiometry of binding between miRNAs and their targets, and it remains 
an open question whether certain interactions identified by probe-enriched chimeric eCLIP reflect 
a high enough fraction of expressed copies of that mRNA to drive functionally relevant expression 
changes.  
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Cell culture  
Human HEK293xT cells were acquired from Takara Bio and cultured in DMEM media (GIBCO) 
with 10% FBS 1% penicillin/streptomycin at 37°C with 5% CO2. C6 cells were purchased from 
Sigma and cultured in F-12 media (GIBCO) with 10% FBS, 2mM Glutamax, and 1X 
penicillin/streptomycin at 37°C with 5% CO2. For each experiment, 10 cm plates (~15 million cells) 
were washed once with cold 1X phosphate buffered saline (PBS) and overlaid with minimal (3 mL 
per 10 cm plate) cold 1X PBS, and UV crosslinked (254 nm, 400 mJ/cm2) on ice. After 
crosslinking, cells were scraped and spun down, supernatant removed, and washed with cold 1X 
PBS. Cell pellets were flash frozen on dry ice and stored at -80 °C. 
 
Mouse liver tissue 
8-week-old C57BL/6J mice were purchased from Jackson Labs. Mice were anesthetized with 
tribromoethanol and perfused with 0.9% saline. Tissues were collected, snap frozen, and stored 
at -80 °C for further analysis. Animal experiments were conducted under a protocol approved by 
the Institutional Animal Care and Use Committee (IACUC) of the University of California San 
Diego. 
 
miRNA mimic transfection 
Human HEK293T cells grown to ~75% confluency in antibiotic-free media were transfected with 
a final concentration of 100 nM of miR-1 or miR-124 miRNA mimics (IDT) or no mimic (mock) with 
Lipofectamine™ RNAiMAX (Invitrogen). Cells were incubated with mimics for 16 hours and then 
harvested (viability 70 - 80%). To harvest, cells were washed with cold 1X PBS, and either UV 
crosslinked as described above (for chimeric-eCLIP), or flash frozen without crosslinking (for 
RNA-seq and sRNA-seq). 
 
Chimeric-eCLIP 
Chimeric eCLIP was based off the previously described seCLIP protocol (Van Nostrand et al., 
2017a; Van Nostrand et al., 2016) with modifications to enhance chimera formation described 
below. As in eCLIP, lysis was performed in eCLIP lysis buffer, followed by sonication and digestion 
with RNase I (Ambion). Immunoprecipitation of AGO2-RNA complexes was achieved with a 
primary mouse monoclonal AGO2/EIF2C2 antibody (eIF2C2 4F9 (sc-53521) (Santa Cruz 
Biotechnology) overnight at 4°C using magnetic beads pre-coupled to the secondary antibody (M-
280 Sheep Anti-Mouse IgG Dynabeads, Thermo Fisher 11202D). Initial experiments used 
standard eCLIP conditions (10 ug of antibody and 125 uL of Dynabeads for 20×106 cells), but 
most experiments used decreased antibody and increased bead amounts based on the trend of 
decreased cross-species chimeras in those conditions (See Fig. 2K and Supplementary Table 3). 
Where indicated, 2% of each immunoprecipitated (IP) sample was saved as input control. For 
human/rat mixing experiments, cell pellets were lysed, sonicated, and RNase digested separately, 
and then mixed during addition of antibody and beads prior to overnight incubation. Western blot 
visualization used anti-AGO2 primary antibody (50683-RP02, SinoBiological) at 1:2000 dilution, 
with TrueBlot anti-rabbit secondary antibody (18-8816-31, Rockland) at 1:6000 dilution. 
 
To phosphorylate the cleaved mRNA 5'-ends, beads were washed and treated with T4 
polynucleotide kinase (PNK, 3' -phosphatase minus, NEB) and 1 mM ATP. Chimeric ligation was 
then performed on-bead at room temperature for one hour with T4 RNA Ligase I (NEB) and 1 mM 
ATP in a 150 µl total volume. As in seCLIP, samples were then dephosphorylated with alkaline 
phosphatase (FastAP, Thermo Fisher) and T4 PNK (NEB), and an RNA adapter (N9RiT22 or 
CLASHn10RiL19bio) was ligated to the 3′ ends of the mRNA fragments (T4 RNA Ligase, NEB). 
With-gel chimeric-eCLIP IP and input samples were then denatured with 1X NuPage buffer (Life 
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Technologies) and DTT, run on 4%–12% Bis-Tris protein gels and transferred to nitrocellulose 
membranes. The region corresponding to bands at the appropriate Ago2 protein size plus 75 kDa 
was excised and treated with Proteinase K (NEB) to isolate RNA, which was column purified 
(Zymo). No-gel chimeric eCLIP samples were treated directly with Proteinase K (NEB) to isolate 
RNA and column purified (Zymo). For both methods, RNA was then reverse transcribed with 
SuperScript IV Reverse Transcriptase (Invitrogen), 3 mM manganese chloride (to encourage 
read-through of crosslink sites), and 0.1 M DTT. Following reverse transcription (i16RT or 
InvAR19 primer), samples were treated as in seCLIP, including treatment with ExoSAP-IT 
(Affymetrix) to remove excess oligonucleotides, hydrolysis with sodium hydroxide (to degrade 
RNA) and addition of hydroden chloride (to balance pH). A 5’ Illumina DNA adapter (InvRand3Tr3) 
was then ligated to the 3′ end of cDNA fragments with T4 RNA Ligase (NEB), and after bead 
purification (Dynabeads MyOne Silane, Thermo Fisher), qPCR was performed on an aliquot of 
each sample to identify the proper number of PCR cycles (using D501_qPCR and D701_qPCR 
primers). The remainder of the sample was PCR amplified with barcoded Illumina compatible 
primers (Q5, NEB) based on qPCR quantification and size selected using AMPure XP beads 
(Beckman). Libraries were quantified using Agilent TapeStation and sequenced on the Illumina 
HiSeq or NovaSeq platform. As previously described, experimental yield was estimated by eCT, 
defined as the extrapolated number of PCR cycles necessary to obtain 100 femtomoles of library, 
assuming 2-fold amplification per PCR cycle (Van Nostrand et al., 2016). In this work, the eCT 
calculation also included extrapolation to normalize for cell number input and percent of cDNA 
used in order to enable comparison across experiments. 
 
RNA visualization experiments were performed as previously described (Van Nostrand et al., 
2020b) with the additional chimeric eCLIP steps added. Briefly, lysis of 3×106 cells was performed 
with either low (3.3U) or high (100U) of RNase I (Ambion), with IP, chimeric (no-adapter) ligation, 
dephosphorylation, biotinylated adapter ligation, SDS-PAGE electrophoresis, and transfer to 
nitrocellulose membrane performed as described above. Detection of biotin-labeled RNA was 
performed using a Chemiluminescent Nucleic Acid Detection Module Kit (Thermo Scientific). 
 
PCR-based miRNA enrichment 
MicroRNA-specific amplification primers were designed to minimize overlap with other miRNAs 
and limit overlapping with variable miRNA ends (Supplementary Table 4). To perform enrichment, 
first a qPCR was performed on diluted chimeric-eCLIP cDNA with miRNA-specific forward primer 
(Supplementary Table 4) and a reverse primer complementary to the RNA adapter sequence 
(chimeCLIP-7qL_R), and per-primer Ct values were obtained. Next, PCR amplification was 
performed in two steps. First, 8 cycles of PCR was performed with miRNA-specific forward primer 
and a reverse primer complementary to the RNA adapter sequence (chimeCLIP-7qL_R), using 
the standard eCLIP PCR conditions except for primer-specific annealing temperatures (see 
Supplementary Table 4). After bead cleanup with 2X volume Ampure XP beads (Beckman), a 
second PCR was performed using standard Illumina multiplexing primers and 8 cycles of 
amplification with standard eCLIP PCR conditions, using variable amount of first PCR product for 
each miRNA primer based on the qPCR Ct obtained (Supplementary Table 4). Each library was 
then purified again with 1.88X volume Ampure XP beads (Beckman), eluted, quantified by 
TapeStation (Agilent), and pooled for sequencing on the Illumina Nova Seq 6000 platform.  
 
Probe-based miRNA capture: Samples were directly treated with Proteinase K (NEB) in place of 
the SDS-PAGE and membrane transfer steps described above. Biotinylated DNA probes 
designed (reverse complement) to the miRNA of interest (IDT) were then hybridized (500 
picomoles per sample), washed on Silane beads (Dynabeads MyOne Silane, Thermo Fisher) and 
treated with DNase (Life Technologies). The remaining reverse transcription and library 
preparation steps were then performed as described above.   
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Probe-based gene capture: Samples were directly treated with Proteinase K in place of the SDS-
PAGE and membrane transfer described above. Reverse transcription and cDNA adapter ligation 
steps were performed as above. Prior to PCR amplification, gblocks Gene Fragments (IDT) 
designed for the gene of interest were amplified to generate dsDNA templates. Biotinylated RNA 
probes were generated using T7 RNA Polymerase and biotinylated nucleotides (bio-UTP and bio-
CTP). The biotinylated probes were coupled to streptavidin beads (Dynabeads MyOne 
Streptavidin C1, Thermo Fisher), chimeric library molecules were denatured, and chimeric 
molecules and probes were hybridized for one hour at 50°C. Beads were then washed, gene-
specific probes were degraded with RNase, and enriched DNA fragments eluted from beads. The 
remaining PCR amplification and library preparation steps were then performed as described 
above.   
 
RNA-seq library preparation 
15 million HEK293T cells were cells spun down, supernatant removed, and washed with cold 
PBS. Cell pellets were flash frozen on dry ice and stored at -80°C. Total RNA was isolated using 
the miRNeasy Mini Kit (Qiagen). Poly(A) RNA was isolated using Dynabeads Oligo (dT)25 (Thermo 
Fisher). RNA integrity and purity was measured using the Agilent 4200 TapeStation. To prepare 
RNA-sequencing libraries, 50 ng of poly(A) selected RNA was heat fragmented in 2X FastAP 
buffer and then treated with alkaline phosphatase (FastAP, Thermo Fisher) and T4 PNK (NEB). 
An RNA adapter was then ligated to the 3′-ends of the mRNA fragments (T4 RNA Ligase, NEB), 
after which RNA was column purified (Zymo) and reverse transcribed with SuperScript III Reverse 
Transcriptase (Invitrogen), then treated with ExoSAP-IT (Affymetrix) to remove excess 
oligonucleotides. A 5’ Illumina DNA adapter (InvRand3Tr3) was ligated to the 3′-end of cDNA 
fragments with T4 RNA Ligase (NEB) and after on-bead cleanup (Dynabeads MyOne Silane, 
Thermo Fisher), qPCR was performed on an aliquot of each sample to identify the proper number 
of PCR cycles. The remainder of the sample was PCR amplified with barcoded Illumina 
compatible primers (Q5, NEB) and size selected using AMPure XP beads (Beckman). Libraries 
were quantified using Agilent TapeStation and sequenced on the Illumina NovaSeq platform. 
 
sRNA-seq library preparation 
HEK293fT cell pellets were prepared, and total RNA isolated as described in the RNA-seq library 
preparation Methods section. Small RNA-sequencing libraries were prepared using the QIAseq 
miRNA Library Kit (Qiagen). Briefly, a pre-adenylated DNA adapter was ligated to the 3' ends of 
the RNA followed by ligation of an RNA adapter to the 5' ends of the RNA. The adapter-ligated 
RNA was then reverse transcribed, and on-bead cleanup of cDNA was performed. Library 
amplification and barcoding was achieved using a universal forward primer and indexing 8-base 
reverse primers (HT Plate Indices 331565). Libraries were quantified using Agilent TapeStation 
and sequenced on the Illumina NovaSeq platform.  
 
Analysis of chimeric eCLIP sequencing data 
The pipeline for analysis of chimeric eCLIP datasets is available at 
https://github.com/YeoLab/chim-eCLIP. Briefly, final library fragments in chimeric eCLIP libraries 
contain a sequence of 10 random nucleotides at the 5¢ end and a sequence of 9 (N9RiT22), 10 
(CLASHn10RiL19bio), or 0 (CLASHRiL19bio) random nucleotides at the 3¢ end of the insert 
sequence. These random sequences serve as unique molecular identifiers (UMIs) and were 
utilized for removal of PCR duplicates (Kivioja et al., 2011). Only the 5¢ end UMI was used for 
processing of total chimeric and probe capture enriched libraries; the 3¢ end UMI was used only 
for PCR duplicate removal in PCR Targeted Chimeric analysis where the 5¢ UMI is lost. In the first 
steps of the analysis, the 10 nucleotide UMIs were pruned from the 5¢ end of R1 read sequences 
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using umi_tools (v1.0.0) (Smith et al., 2017) and saved in the read name. Next, aggressive 
adapter trimming was performed to remove not only adapter sequences but also adapter fragment 
concatemers with cutadapt (v2.5) using options -O 1 --times 3, -e 0.1, --quality-cutoff 6, -m 18, 
and 10nt fragments that step through the RNA adapter (-a AGATCGGAAG -a GATCGGAAGA -
a ATCGGAAGAG -a TCGGAAGAGC -a CGGAAGAGCA -a GGAAGAGCAC -a GAAGAGCACA 
-a AAGAGCACAC -a AGAGCACACG -a GAGCACACGT -a AGCACACGTC -a GCACACGTCT 
-a CACACGTCTG -a ACACGTCTGA -a CACGTCTGAA -a ACGTCTGAAC -a CGTCTGAACT -
a GTCTGAACTC -a TCTGAACTCC -a CTGAACTCCA -a TGAACTCCAG -a GAACTCCAGT -a 
AACTCCAGTC -a ACTCCAGTCA). This aggressive trimming due to high adapter concatemer 
presence was later observed to be linked to RNA adapters containing random nucleotides on the 
5’ end, which can be alleviated with the CLASHRiL19bio adapter (Supplementary Table 4). 
Remaining reads shorter than 18 nucleotides in length were discarded. The final 9 or 10 
nucleotides at the 3¢ end of each read were then removed using cutadapt (v2.5) to ensure possible 
remaining random sequence at the 3¢ end of the insert sequence was removed. Further analysis 
was performed separately for analysis of non-chimeric reads and analysis of chimeric reads. 
 
Non-chimeric (standard eCLIP) analysis 
Standard eCLIP analysis was performed as previously described (Van Nostrand et al., 2016). 
Briefly, reads were mapped to a database of species-specific (human, mouse or rat depending 
on the experiment) repetitive elements from RepBase 18.05 using STAR (v2.7.6a) using the 
following parameter: --outFilterMultimapNmax 30. Reads that did not align to the repeats 
database were then mapped to the human (hg38), mouse (mm10), or rat (rn6) genomes using 
STAR (v2.7.6a) (Dobin et al., 2013) with options to require unique mapping (--
outFilterMultimapNmax=1) and end-to-end read alignment was forced (--
alignEndsType=EndToEnd). PCR duplicates were removed using umi_tools (v1.0.0) by utilizing 
the 5’ UMI sequences and mapping positions. Clusters of reads were identified within eCLIP 
samples using the cluster caller CLIPper (https://github.com/YeoLab/clipper/commit/61d5456) 
(Lovci et al., 2013) using transcript annotations for human (GENCODE v29; ENCODE accession 
ID ENCFF159KBI), mouse (GENCODE vM25), or rat (ENSEMBL release 98). For each cluster 
IP versus input fold enrichment values were then calculated as a ratio of counts of reads 
overlapping the cluster region in the IP and the input samples (read counts in each sample were 
normalized against the total number of genome mapped reads in the sample remaining after PCR 
duplicate removal). A p-value was calculated for each cluster by the Yates’ Chi-Square test (or 
Fisher Exact Test if the observed or expected read number was below 5). A pseudocount of 1 
read was added to all read counts per cluster for input samples when calculating p-values and IP 
versus input log2 fold changes. Clusters were filtered using a list of excluded regions (ENCODE 
accession ID ENCFF269URO) and annotated using transcript information from GENCODE v29 
(ENCODE accession ID ENCFF159KBI) and LNCipedia v5.0 (Volders et al., 2019) for human and 
vM25 for mouse (Frankish et al., 2019) using the following priority hierarchy to define the final 
annotation of overlapping features: protein coding transcript (CDS, UTRs, intron), followed by 
non-coding transcripts (exon, intron). Clusters passing cutoffs of IP vs. input fold enrichment ≥ 8 
and p-value ≤ 0.001 were deemed significant and referred to as significantly enriched peaks.  
 
Information content for significant peaks was calculated using the following formula, where ci = 
number of IP reads overlapping the peak, ii = number of input reads overlapping the peak, ni = 
total IP reads, and mi = total input reads. 

𝑝! =	
𝑐!
𝑛!
									𝑞! =	

𝑖!
𝑚!

 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑡𝑒𝑛𝑡	𝑓𝑜𝑟	𝑝𝑒𝑎𝑘	𝑖 = 	𝑝! × 𝑙𝑜𝑔2(
𝑝!
𝑞!
)		 
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Inforrmation content was summed across peaks to calculate the total information at peaks 
overlapping various transcript annotation regions. 
 
Comparison of no-gel versus with-gel fold-enrichment 
Peak-level fold-enrichment between samples was calculated by first taking all CLIPper clusters in 
the first (e.g. no-gel) sample and then calculating the fold-enrichment in IP versus input separate 
for each cluster in both samples (with-gel and no-gel), with a pseudocount of 1 added to the input 
read counts at each cluster. For the second (e.g. with-gel) sample in the comparison, if no reads 
in the IP overlapped the cluster, a pseudocount of 1 was used. The fold-enrichments for all 
clusters across both experiments were then plotted (Fig. 2E). This process was repeated for the 
inverse comparison (e.g. comparing fold-enrichment for all clusters identified in the with-gel 
experiment) (Sup. Fig. 2F). 
 
Chimeric read analysis 
Identification of chimeric reads was adapted based on the method described by Moore et al. 
(Moore et al., 2015). Reads were first “reverse mapped” to a database of mature human or mouse 
miRNAs compiled from miRBase (v22) (Kozomara et al., 2019) by mapping the miRNA 
sequences to the reads using Bowtie (v1.2.2) (Langmead et al., 2009). Alignments of miRNA to 
sequencing reads were then filtered, keeping only positive strand alignments and prioritizing 
alignments with the fewest number of mismatches so that only one miRNA alignment was 
selected for each read. In each of these reads, sequences flanking the miRNA alignment were 
identified (the chimeric “target” portion in chimeric reads), and reads with target portions less than 
18 nucleotides in length were discarded. As above, target portions were first mapped to a species-
specific repeat element database, with mapped reads discarded. The remaining sequences were 
mapped to the human (hg38), mouse (mm10), or rat (rn6) genomes using STAR (v2.7.6a) and 
PCR duplicates were removed using umi_tools (v1.0.0). Annotation of target portions of chimeric 
reads was performed using transcript information for human (GENCODE v29), mouse 
(GENCODE vM25) or rat (RefGene) following the same hierarchy rules as listed for the annotation 
of peaks listed above.  
 
For initial analyses, clusters were identified with CLIPper using all chimeric reads as input (with 
transcript annotations described above); for following analyses, chimeric reads were first 
separated by miRNA, and clusters were then identified (CLIPper) separately for each miRNA 
using the miRNA-specific set of chimeric reads. Reproducible clusters were identified with an 
approach based off the Irreproducible Discovery Rate (IDR) approach (Li et al., 2011) by ranking 
all clusters based on -log10 transformed CLIPper p-values, followed by running the IDR software 
(v 2.0.2). IDR-identified regions with IDR score ≥ 540 were used as ‘reproducible’ clusters.  
 
Calculation of miRNA and chimeric read abundance 
As some miRNAs have multiple highly homologous genomic copies, quantification of miRNA 
abundance from only uniquely mapped reads yielded inaccurate estimates of expression. To 
address this for non-chimeric analyses, multimapping reads were also considered by taking reads 
that failed to map uniquely and redoing STAR mapping with the option ‘--
outFilterMultimapNmax=10000’ flag, then selecting the primary alignment for each read, and then 
performing PCR duplicate removal as described above for uniquely mapping reads. This 
approach may miss occasional PCR duplicates that are assigned different primary alignments 
from multiple equal alignments; analysis indicates that this typically alters expression estimates 
by <2%.  
 
As appropriate, per-miRNA and per-cluster abundance was normalized using three alternative 
approaches: RPM (reads per million) calculated versus all uniquely mapped, non-PCR duplicate 
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reads, RPMI (Reads Per Million Initial) calculated versus all sequenced reads (prior to any adapter 
trimming or other processing), and RPMC (Reads Per Million Chimeras) calculated versus all 
uniquely mapped, non-PCR duplicate chimeric reads. RPM of chimeric reads was calculated with 
a denominator of the sum of (uniquely mapped, PCR duplicate removed) chimeric reads and non-
chimeric reads. RPM normalization of miRNA read counts in small RNA-seq was performed 
analogously to the calculation of non-chimeric RPM in chimeric eCLIP experiments.  
 
Analysis of human/rat mixing experiments 
For human/rat mixing experiments, adapter trimming, mapping to human mature miRNAs 
(miRBase v22), removal of putative rRNA artifact miRNAs (Supplementary Table 1), and 
identification of potential chimeric reads was performed as described above (in pilot analyses, 
mapping to human miRNAs gave similar results as separate mapping to both human and rat 
miRNA annotations). After removing the miRNA region, the remaining putative chimeric fractions 
were first mapped to a repeat element database containing both human and rat elements 
(RepBase 18.05) with mapped fragments discarded. Next, remaining reads were separately 
mapped to human (hg38) and rat (rn6) genomes. For this analysis, genomic mapping was 
performed allowing multiple mapping (--outFilterMultimapNmax 99). Mapping was then compared 
between human and rat using STAR alignment score (‘AS’ flag), with ‘species-specific’ reads 
defined as those with a AS score at least 2 greater for one species than the other.  
 
To identify species-specific miRNAs, first the number of putative chimeras (reads containing a 
miRNA plus at least 18nt of additional sequence either on the 5’ or 3’ end) were counted for all 
annotated miRNAs. Next, for the 3 with-gel pairs of human-only and rat-only chimeric eCLIP 
experiments, the fold-change in expression was calculated for each miRNA (after adding a 
pseudocount of 1 to both human and rat counts and normalizing against the total number for all 
miRNAs in the dataset). The set of ‘species specific’ microRNAs was then defined as those with 
a fold-change greater than or equal to 10 in all three human-only/rat-only pairs. Analysis of 
putative false-positive chimeras was performing using only chimeras for these miRNAs for which 
the chimeric fraction was also a species-specific map to human or rat (defined as reads that either 
only mapped to one of the two genomes, or for which the STAR mapping score (AS flag) was at 
least 2 larger for one species than the other). Annotations for rat transcripts used RefGene 
annotations from the UCSC Genome Browser (obtained 10/28/2019). 
 
Analysis of PCR-enriched chimeric eCLIP 
DNA fragments in the targeted chimeric eCLIP libraries contain a 10nt UMI 3¢ end of the insert 
sequence. These UMIs were pruned from the 5¢ ends of R2 read sequences and saved by 
incorporating them into the read names in the R1 FASTQ files to be utilized in subsequent analysis 
steps. All subsequent steps were performed on R1 FASTQ files only. Next, 3¢-adapters were 
trimmed from reads using cutadapt (v2.5) (Martin, 2011), and remaining reads than 18 nucleotides 
in length were removed. The final 9 nucleotides at the 3¢ end of each read were trimmed using 
cutadapt (v2.5) to remove potential UMI sequence at the 3¢ end. The miRNA primer sequence 
used to select for the miRNA of interest was then used to select for chimeras and trimmed from 
the 5¢ end of reads, and reads with remaining length shorter than 18 nucleotides were removed. 
Reads were then processed using the same steps as in the “Non-chimeric reads” section above. 
 
Motif analysis of chimeric eCLIP clusters 
First, each cluster was extended by 10nt on the 5’ side (to account for possible clusters that 
terminate at the protein-RNA crosslink site), and sequences were obtained from the appropriate 
species genome. Next, the presence or absence of every 6-mer was calculated for each extended 
cluster sequence, and percent frequency for each 6-mer was determined across either all clusters 
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or subsets of clusters that met significance (CLIPper p ≤ 10-5 or IDR ≥ 540) as indicated. Seed 6-
mer sequences complementary to miRNA positions 2-7, 3-8, 1-6, or A1-6 (an A at position 1 
followed by miRNA positions 2-6) were obtained from the major annoted miRNA sequence from 
miRbase. 
 
RNA-seq analysis 
Reads in the RNA-seq libraries contain a 10 nucleotide UMI at the 5¢ end of each read, which was 
pruned from 5¢ ends of R1 read sequences using umi_tools (v1.0.1). Next, 3¢-adapters were 
trimmed from reads using cutadapt (v2.7), discarding reads less than 18 nucleotides remaining. 
Next, reads were mapped to a database of human repetitive elements and rRNA sequences 
compiled from Dfam (Hubley et al., 2016) and Genbank (Benson et al., 2013). Reads that did not 
align to the repeats database were then mapped to the human genome (hg38) using STAR 
(v2.6.0c). PCR duplicates were removed using umi_tools (v1.0.1) by utilizing UMI sequences from 
the read names and mapping positions. Gene counts per sample were obtained using previously 
described pipelines for quantifying region-level coverage from eCLIP data (Van Nostrand et al., 
2020a) as well as transcript information from GENCODE (V29). Differential expression analysis 
was performed using the R package DESeq2 (v 1.34.0) (Love et al., 2014). 
 
sRNA-seq analysis 
Reads in sRNA-seq libraries contain the sequence “AACTGTAGGCACCATCAAT” followed by a 
12 nucleotide UMI at the 3¢ end of each read. The “AACTGTAGGCACCATCAAT” sequence was 
identified within each read using cutadapt (v2.7) and reads that did not contain this sequence 
were discarded. Next, the UMIs were appended to the read names, and the 
“AACTGTAGGCACCATCAAT” sequence as well as following 3¢ sequence (this includes the UMI 
and sequencing adapter) using a custom python script. Reads were mapped to a database of 
human repetitive elements and rRNA sequences compiled from Dfam and Genbank. Reads that 
did not align to the repeat database were then mapped uniquely to the human genome (hg38) 
using STAR (v2.6.0c). PCR duplicates were removed using umi_tools (v1.0.1) by considering 
both UMI sequences and mapping positions. miRNA counts were obtained using a custom python 
script and miRNA annotations from Mirbase (v22). In order to allow relative comparison of 
abundances of miRNAs that are transcribed from multiple genomic locations, reads that failed to 
map uniquely were re-mapped allowing multimapping and selecting primary alignment as 
described above for miRNA quantification with non-chimeric reads. 
 
miRNA seed match analysis for miRNA over-expression 
To assess frequency of miRNA seed matches in 3' UTR of up- and down-regulated genes 
following miRNA transfections, a seed match was defined as presence of 6-mers complementing 
miR-124 or miR-1 mature sequences in positions [2:7] or [3:8]. 3' UTR sequences were obtained 
by merging overlapping and bookending regions with 3' UTR annotations into one contig 
encompassing all 3' UTR sequences associated with a gene (with N characters inserted when 
joining non-adjacent sequences in order to avoid creation of subsequences not present in a real 
isoform). Next, genes were sorted based on the DESeq2 ‘stat’ value, and the Sylamer tool (van 
Dongen et al., 2008) was used to calculate a hypergeometric enrichment p-value for each 6-mer 
in growing bins that increase size in steps from the beginning of the list to the end of the list, using 
k-mer size of 6 nt (-k 6), bin growth step size of 50 genes (-grow 50) and making evaluation of 6-
mer counts conditional on frequency of k-mers of up to 4 nt in length (-m 4).    
 
Comparison of miRNA targets with miRNA over-expression 
To connect information about miRNA target sites with changes in the transcriptome, each gene 
was assessed for presence of miRNA-specific chimeric clusters identified in three non-
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overlapping features (3' UTR, CDS or intronic) defined based on GENCODE (v29) annotations 
and feature hierarchy as described above in “Non-chimeric (standard eCLIP) analysis”. When 
miRNA-specific chimeric clusters overlapping a gene were identified, the average chimeric read 
coverage of the cluster (calculated by taking the mean of two biological replicates) was used to 
describe chimeric coverage of the cluster. If more than one cluster was present in the same 
annotation type of the gene, then the site with the greatest chimeric coverage was used. Cutoffs 
for different analyses were implemented as indicated, typically using genes with either all 
reproducible clusters (chimeric RPMC ≥ 0 and IDR ≥ 540), or subsets of these with increased 
chimeric RPMC cutoffs. For analysis of ‘probe-enriched only versus total and probe-enriched’ 
targets (Sup. Fig. 7J-K), ‘total and probe-enriched’ were defined as genes with clusters with 
chimeric RPMC ≥ 100 and IDR ≥ 540 in both probe-capture and total (non-enriched) experiments, 
and ‘probe-enriched only’ were all other genes with clusters with chimeric RPMC ≥ 100 and IDR 
≥ 540 in the probe-capture experiment. For analysis of CDS versus 3' UTR and intronic targets, 
genes were included in the ‘CDS only’ class if they contained a chimeric cluster (chimeric RPMC 
≥ 100 and IDR ≥ 540) in the CDS region and lacked any clusters for both 3' UTR and intronic 
regions (chimeric RPMC ≥ 0) (with equivalent rules for ‘3' UTR only’ and ‘Intronic only’). 
 
In addition to annotating genes based on chimeric eCLIP target sites in three different features 
(3' UTR, CDS and intronic features), genes were also gropued based on predictions of 896 miR-
1-3p targets and 1,820 miR-124-3p targets by TargetScan version 7.2 (Agarwal et al., 2015), of 
which 862 of miR-1-3p and 1,769 of miR-124-3p targets overlapped GENCODE v29 gene 
identifiers. For analysis of overlap between TargetScan and chimeric eCLIP data, genes were 
first separated based on presence or absence of TargetScan predicted targets, and then based 
on whether they contained a cluster (chimeric RPMC ≥ 100 and IDR ≥ 540) in the probe-capture 
chimeric experiment. 
 
Software Availability:  
 
The primary data processing pipeline for chimeric eCLIP data is available at 
https://github.com/YeoLab/chim-eCLIP. Other custom scripts are available upon reasonable 
request. 
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Figure 1  
Identification of miRNA targets with chimeric eCLIP in HEK293T cells. (A) Schematic of 
alterations in chimeric eCLIP versus standard eCLIP of AGO2. (B-C) Chimeric eCLIP 
experiments analyzed with standard eCLIP peak calling using non-chimeric reads. Stacked bars 
indicate (B) the number of significantly enriched peaks (p ≤ 10-3 and fold-enrichment ≥ 8 in 
immunoprecipitation (IP) versus size-matched input) or (C) distribution of information content in 
significantly enriched peaks, with peaks annotated based on overlapping transcript regions 
(indicated with colors). (D) Stacked bars indicate the number of chimeric reads (miRNA plus a 
uniquely aligned target sequence) separated based on transcript regions overlapping chimeric 
read alignments. (E) Points indicate the number of chimeric reads observed per miRNA (with 
bar representing average across two replicates). Shown are all 62 miRNAs with >1000 average 
chimeric reads. Color indicates miRNAs from two abundant families in HEK293T cells. (F) For 
each of the top 20 miRNAs, lines indicate the percent of clusters containing either (colors) the 
indicated five 6-mers, or (black histogram) all other 6-mers. Orange line indicates mean of all 
other 6-mers. Data shown are from one representative replicate. Plots were generated using the 
MATLAB ‘distributionPlot’ package with option 'histOpt=0’ to plot histograms only. (G) Stacked 
bars indicate the number of chimeric reads per miRNA identified (average across 2 replicates) 
separated based on overlapping transcript regions. 
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Supplemental Figure 1 
Identification of miRNA targets with chimeric eCLIP. (A-B) ImmunoPrecipitation (IP) Western 
Blot and RNA visualization for AGO2 chimeric eCLIP. Shown are low (3.3U) and high (100U) 
RNase conditions. (A) Western blot using anti-AGO2 primary antibody (Sino Biological) (B) RNA 
visualization blot for IP samples from (A). Biotin on the ligated RNA adapter was visualized with 
a biotin Chemiluminescent Nucleic Acid Detection Module Kit (Thermo Scientific). (C-D) For 
each miRNA, points indicate reads per million (RPM) of (x-axis) non-chimeric (miRNA-only) 
reads versus (y-axis) chimeric reads containing the miRNA per million mapped reads (RPM). 
The dashed line shows equality, and the curved line shows loess fit with 0.95 confidence 
intervals. Panels show data from (C) replicate 1 and (D) replicate 2. (E) Each point corresponds 
to a miRNA with values on x-axis showing mean chimeric reads per million chimeras (RPMC) 
from two replicates of with-gel chimeric eCLIP and values on y-axis showing mean reads per 
million (RPM) from two replicates of small RNA-seq HEK293T libraries. The orange line shows 
equality, and the blue line shows least squares linear fit with 0.95 confidence intervals. 
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Figure 2 
Improved recovery of chimeric miRNA fragments with no-gel chimeric eCLIP. (A) Schematic for 
no-gel versus standard chimeric eCLIP. (B) Points indicate yield (represented as extrapolated 
number of PCR cycles required to obtain 100 fmoles of amplified library, assuming 2-fold 
amplification per cycle). Experiments shown include standard and no-gel datasets described 
here as well as human-only samples from mixing experiments below. (C) Points indicate miRNA 
abundance among chimeric reads for standard with-gel (x-axis) versus no-gel (y-axis) 
experiments, displayed as log2(Reads Per Million Chimeras (RPMC)). Pearson correlation (R) is 
indicated. Blue line indicates least squares linear regression, and orange line indicates equality. 
(D) Genome browser figure showing with- and no-gel chimeric eCLIP data for the GIGYF1 
3′UTR. Boxes underneath tracks indicate CLIPper-identified clusters (with p < 0.05), and miRNA 
seed 2-7 sequence matches in the region are indicated above. Input and ‘all reads’ are shown 
as reads per million, ‘all chimeric reads’ is shown as reads per million chimeras, and miR-
specific tracks are shown as the number of reads. (E) For each of 250,339 clusters identified 
from non-chimeric eCLIP analysis of no-gel chimeric eCLIP replicate 1, points indicate fold-
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enrichment in (x-axis) no-gel chimeric eCLIP replicate 1 versus (y-axis) with-gel chimeric eCLIP 
replicate 1, with Pearson correlation indicated. Points indicated in red reflect peaks overlapping 
miRNA loci. (F) For each of the top 20 miRNAs, lines indicate the percent of clusters containing 
either (colors) the indicated five 6-mers, or (black histogram) all other 6-mers. Red line indicates 
mean of all other 6-mers. Data shown are from one representative replicate. (G-H) Stacked bars 
indicate the fraction of (G) chimeric reads or (H) clusters identified from chimeric reads from 
standard and no-gel chimeric eCLIP, separated by overlapping transcript annotation (indicated 
by colors). (I) Schematic of mixing experiments between human (HEK293xT) and rat (C6) cell 
lines. (J-K) Points indicate ‘false positive’ rate per mixing experiment, determined by identifying 
the subset of chimeras where the target fragment maps uniquely either to human or rat and 
calculating the ratio of miRNAHuman:targetRat target chimeras divided by miRNAHuman:targetHuman + 
miRNAHuman:targetRat. Standard (with-gel) experiments are indicated in blue and no-gel 
experiments are indicated in grey. (J) All experiments are shown, with red line indicating 
median, and boxes indicating 25th to 75th percentiles. (K) Points indicate datasets split by 
whether the ratio of cell input to secondary beads was high (≥10 million cells per 100 uL of 
beads) or low (≤1.5 million cells per 100 uL of beads). Significance was determined by two-
tailed Kolmogorov-Smirnov test. 
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Supplementary Figure 2.  
Improved recovery of chimeric miRNA fragments with no-gel chimeric eCLIP. (A) Points indicate 
miRNA abundance among non-chimeric reads for standard with-gel (x-axis) versus no-gel (y-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.13.480296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.13.480296
http://creativecommons.org/licenses/by/4.0/


axis) experiments. Blue line indicates least squares linear regression, and orange line indicates 
equality. (B-C) For each miRNA, points indicate reads per million (RPM) of (x-axis) non-chimeric 
(miRNA-only) reads versus (y-axis) chimeric reads containing the miRNA for no-gel chimeric 
eCLIP experiments. The dashed line shows equality, and the curved line shows loess fit with 
0.95 confidence intervals. Panels show data from (B) replicate 1 and (C) replicate 2. (D-E) 
Chimeric eCLIP experiments in HEK293T cells analyzed with standard eCLIP peak calling. For 
significantly enriched peaks (p ≤ 10-3 and fold-enrichment ≥ 8 in immunoprecipitation (IP) versus 
size-matched input), stacked bars indicate (D) the sum of information content in significantly 
enriched peaks or (E) the percent of the total sum of information content, with peaks annotated 
based on overlapping transcript regions (indicated with colors). (F) For each of 353,280 clusters 
identified from non-chimeric eCLIP analysis of with-gel chimeric eCLIP replicate 1, points 
indicate fold-enrichment in (x-axis) with-gel chimeric eCLIP replicate 1 versus (y-axis) no-gel 
chimeric eCLIP replicate 1, with Pearson correlation indicated. Points indicated in red reflect 
peaks overlapping miRNA loci. (G) Bars indicate the percent of clusters containing miRNA 2-7 
seed (the 6-mer complementary to each miRNA 2-7 position). Shown are the most abundant 20 
miRNAs as in Fig. 2F. (H) Stacked bars indicate the number of significantly enriched peaks (p ≤ 
10-3 and fold-enrichment ≥ 8 in immunoprecipitation (IP) versus size-matched input) from 
standard eCLIP (non-chimeric) analysis of chimeric eCLIP datasets. (I) Stacked bars indicate 
number of clusters identified from chimeric reads only, with overlapping transcript annotation 
indicated by colors. (J) Stacked bars indicate percent of all chimeric reads for the top 20 most 
abundant miRNAs that overlap indicated transcript annotations. (K-L) ImmunoPrecipitation (IP) 
Western Blot and RNA visualization for AGO2 chimeric eCLIP in rat C6 cells. Shown are low 
(3.3U) and high (100U) RNase conditions. (K) Western blot using anti-AGO2 primary antibody 
(Sino Biological) (L) RNA visualization blot for IP samples from (K). Biotin on the ligated RNA 
adapter was visualized with a biotin Chemiluminescent Nucleic Acid Detection Module Kit 
(Thermo Scientific). (M-N) Stacked bars indicate the percent of (M) chimeric reads or (N) 
clusters called from chimeric reads from with- and no-gel chimeric eCLIP experiments 
performed in rat C6 cells that overlap with the indicated transcript regions. (O) Points indicate 
the log2(ratio) of H (human HEK293T-specific miRNAs, defined as RPMHEK293T / RPMC6 ≥ 10) 
versus R (rat C6 specific miRNAs, defined as RPMC6 / RPMHEK293T ≥ 10). Standard (with-gel) 
experiments are indicated in blue and no-gel experiments are indicated in grey. Red line 
indicates median, and boxes indicate 25th to 75th percentiles. (P) For all replicates of human-
only and human/rat mixed samples, stacked bars indicate the number of chimeric reads for 
human-specific miRNAs for which the chimeric region uniquely maps to (grey) human or (red) 
rat protein-coding transcriptomes (including mapping to 5’UTR, CDS, 3’UTR, and intronic 
regions). (Q) Points indicate ‘false positive’ rate per mixing experiment calculated from 3’UTR-
mapping chimeras only, determined by identifying the subset of chimeras where the target 
fragment maps uniquely either to human or rat and calculating the ratio of miRNAHuman:targetRat 
target chimeras divided by miRNAHuman:targetHuman + miRNAHuman:targetRat. Standard (with-gel) 
experiments are indicated in blue and no-gel experiments are indicated in grey. Red line 
indicates median, and boxes indicate 25th to 75th percentiles. 
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Figure 3. 
PCR enrichment of miRNAs of interest. (A) Schematic of enrichment of chimeras with a desired 
miRNA by targeted PCR amplification, using a miRNA-specific primer. (B) Bars indicate the 
number of chimeric reads per miRNA from (right) PCR enrichment for 94 separate miRNAs, or 
(left) extrapolated numbers for a paired total with-gel experiment (sequenced to 50.4×106 reads) 
if it were sequenced to the same total depth (736×106 reads) as the sum of all 94 separate 
PCR-enriched libraries. (C-D) Analysis of significant clusters (CLIPper p ≤ 10-5) from miR-25 
PCR enrichment. (C) Pie chart indicates the fraction of clusters overlapping indicated transcript 
region annotations. (D) For all 6-mer sequences, lines indicate the percent of significant clusters 
containing each. Colors indicate 6-mers matching miR-25 seed sequences and the last 6 nt of 
the PCR primer. (E) For each of 94 human (hsa-) miRNAs profiled by PCR-enriched chimeric 
eCLIP, lines indicate the percent of significant clusters containing either (colors) the indicated 
five 6-mers, or (black histogram) all other 6-mers. Orange line indicates mean of all other 6-
mers. 
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Supplementary Figure 3. 
PCR enrichment of miRNAs of interest. (A) Bars indicate the percent of sequenced reads that 
are chimeric (containing both a miRNA and a uniquely mapped other fragment) for the 94 most 
abundant miRNAs profiled by (right) PCR-enriched chimeric eCLIP or (left) standard with-gel 
chimeric eCLIP in HEK293T cells. (B) Stacked bars indicate the number of (black) p≤10-5 or 
(grey) p<0.05 CLIPper-identified clusters using chimeric reads only for the 94 miRNAs. (C) From 
chimeric reads from PCR-enriched chimeric eCLIP for the 94 miRNAs, stacked bars indicate the 
fraction of CLIPper-identified clusters (with p≤10-5) overlapping the indicated transcript region 
annotations. (D) For each miRNA, the difference in the percent of clusters containing either (top) 
the miRNA seed (2-7) or (bottom) the last 6nt of the PCR primer was calculated for all clusters 
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versus only those clusters which overlap significantly enriched (versus paired input) peaks from 
standard (non-chimeric) analysis of with-gel AGO2 chimeric eCLIP, with the histogram showing 
the distribution of these differences. (E) For each of 94 miRNAs profiled by PCR-enriched 
chimeric eCLIP, lines indicate the percent of significant clusters identified from chimeric reads 
containing either (colors) the indicated five 6-mers, or (black histogram) all other 6-mers. 
Orange line indicates mean of all other 6-mers. For this figure, only clusters that overlap 
significantly enriched peaks from standard (non-chimeric) analysis of with-gel AGO2 chimeric 
eCLIP were considered (see Fig. 3E for analysis of all clusters). 
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Figure 4. 
Probe-capture enrichment of miRNAs of interest. (A) Schematic of probe-capture enrichment for 
chimeras containing a targeted miRNA. (B) Genome browser image shows read density for the 
E2F3 3’UTR for non-chimeric analysis (‘all reads’), all chimeric reads from with-gel chimeric 
eCLIP, or miRNA-specific chimeric reads from probe-enriched chimeric eCLIP. Bars underneath 
tracks indicate CLIPper-identified clusters. (C-L) Shown are (C-G,F) enrichment of 5 miRNAs 
(hsa-) in HEK293T, (F,H-J) enrichment of 4 miRNAs (hsa-) in HEK293T, and (F,K-L) five 
indicated miRNAs (mmu-) in mouse liver tissue. (C,H,K) Points indicate chimeric reads in Reads 
Per Million Initial (RPMI) for all miRNAs in (x-axis) standard chimeric eCLIP, or (y-axis) probe 
capture-enriched chimeric eCLIP. Green points and line indicate targeted miRNAs, with a least 
squares linear model fit showing 0.95 confidence intervals. Light blue, dark blue and gray points 
indicate miRNAs that were not specifically targeted but are in the same family (share seed 
sequence) with targeted miRNAs. Black points and a robust linear regression model fit showing 
0.95 confidence intervals represent all other miRNAs (except (K), where miRNAs with fewer 
than 20 chimeric reads in liver standard chimeric eCLIP experiment were omitted). (D,I,L) Points 
indicate percent of chimeric reads that represent the targeted miRNAs out of all sequenced 
reads, with bar indicating mean of replicate experiments. (E) Bars indicate the number of genes 
with reproducible clusters of chimeric reads in their 3’UTR regions for the indicated enriched 
miRNAs. (F) Points indicate percent of chimeric reads that represent the targeted miRNAs out 
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of all chimeric reads, with bar indicating mean of replicate experiments. (G,J) For each of the 
targeted miRNAs, lines indicate the percent of clusters of probe capture enriched chimeric reads 
containing either (colors) the indicated five 6-mers, or (black histogram) all other 6-mers. 
Orange line indicates mean of all other 6-mers. Data shown are from one representative 
replicate.  
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Supplementary Figure 4. 
Probe-capture enrichment of miRNAs of interest. (A-D) 8 miRNA enrichment experiment. (A) 
Points indicate chimeric reads in Reads Per Million Initial (RPMI) for all miRNAs in (x-axis) 
standard chimeric eCLIP, or (y-axis) probe capture-enriched chimeric eCLIP. Green points and 
line indicate targeted miRNAs with a least squares linear model fit showing 0.95 confidence 
intervals. Black points and a robust linear regression model fit showing 0.95 confidence intervals 
represent all other miRNAs. (B-C) Points indicate percent of chimeric reads out of (B) all 
chimeric reads or (C) all sequenced reads that represent the targeted miRNAs from (A), with bar 
indicating mean of two replicate experiments. (D-E) Bars indicate the number of genes with 
reproducible clusters in their 3’UTR regions for the indicated enriched miRNAs, for (D) the 8-
miRNA enrichment experiment or (E) the 4-miRNA experiment (See Fig. 4H-J). (F) For each of 
the targeted miRNAs, lines indicate the percent of clusters of probe capture enriched chimeric 
reads containing either (colors) the indicated five 6-mers, or (black histogram) all other 6-mers. 
Orange line indicates mean of all other 6-mers. Data shown are from one representative 
replicate. (G-J) miR-122-5p capture enrichment in mouse liver tissue. (G) Points indicate 
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chimeric reads in Reads Per Million Initial (RPMI) for all miRNAs in (x-axis) standard chimeric 
eCLIP, or (y-axis) probe capture-enriched chimeric eCLIP performed in mouse liver. Green 
indicates miR-122-5p, and light blue indicates miRNAs that have the same seed as miR-122-5p 
but were not specifically targeted. Black points and a robust linear regression model fit showing 
0.95 confidence intervals represent all other miRNAs except those with fewer than 20 chimeric 
reads in standard chimeric eCLIP experiment. (H-I) Points indicate percent of chimeric reads out 
of (H) all chimeric reads or (I) all sequenced reads that that represent the targeted miRNAs from 
(H), with bar indicating average from two replicate experiments. (J-K) As in (D-E) for (J) miR-
122 enrichment experiment or (K) 5 miRNA enrichment experiment. (L-M) Motif frequency as in 
(F) shown for (L) miR-122 enrichment experiment or (M) 5 miRNA enrichment experiment (see 
Fig. 4K-L).  
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Figure 5 
Probe-capture enrichment of genes of interest. (A-B) Points indicate chimeric read counts (per 
million initial reads) per gene in (x-axis) standard chimeric eCLIP, or (y-axis) probe capture-
enriched chimeric eCLIP. Targeted genes (A) ULK1 or (B) APP are indicated in green. (C-D) 
Points indicate human (hsa-) per-miRNA chimeric read counts (per million chimeras) in standard 
chimeric eCLIP (x-axis) and probe capture-enriched chimeric eCLIP (y-axis) targeting 3’UTRs of 
(C) ULK1 and (D) APP. (E-F) Genome browser tracks show per-miRNA chimeric read density 
for 3’UTR regions of (E) ULK1 and (F) APP. ‘All reads’ and ‘all chimeric reads’ are from with-gel 
chimeric eCLIP, and miR-specific chimeric read tracks below are from gene-enriched chimeric 
eCLIP. All miRNA seed (2-7) matches are indicated, with colors indicating miRNA families 
sharing the same seed sequence. 
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Figure 6. 
Validation of regulated miRNA targets with miRNA over-expression. (A) Schematic of miRNA 
over-expression experiments. (B-C) Points indicate abundance of two over-expressed miRNAs 
(miR-1-3p and miR-124-3p) in 2 replicate experiments, with bars indicating mean, for (B) reads 
per miRNA (RPM) from small RNA-seq and (C) chimeric reads per miRNA (RPMC) from 
chimeric eCLIP. (D) Lines show -log10 transformed hypergeometric p-values of enrichment of 
each of 2,332 6-mers complementing miRBase human miRNAs in [2:7] and [3:8] positions in 
growing bins of 3’UTR sequences of all expressed genes. Genes were sorted from down- to up-
regulated upon miR-124 over-expression using test statistic associated with expression fold-
change. (E) Stacked bars indicate number of reproducible (IDR > 540 across two replicates) 
clusters of chimeric reads from (left) miR-1 chimeric eCLIP in miR-1 over-expression or (right) 
miR-124 chimeric eCLIP in miR-124 over-expression, with overlapping transcript region 
annotation indicated by color. (F) For indicated gene classes, points indicate fold-enrichment in 
miR-124 over-expression. Red line indicates median, and blue boxes indicate 25th to 75th 
percentiles. Gene classes include those with TargetScan7.2-predicted miR-124 targets and 
genes containing chimeric eCLIP clusters meeting indicated chimeric reads per million (RPM) 
cutoff (average across two replicates) for either total (non-enriched) or miR-124 probe-enriched 
chimeric eCLIP. See Sup. Fig. 6I for miR-1 over-expression. Plots were generated using the 
MATLAB ‘plotSpread’ package. (G-I) Cumulative empirical distribution plots show fold-
enrichment in miRNA over-expression for (G,I) miRNA-124 and (H) miRNA-1. Significance was 
determined by two-tailed Kolmogorov-Smirnov test. (G,H) Lines indicate sets of genes (green) 
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with or (black) without TargetScan7.2-predicted miRNA interaction sites versus sets of genes 
(dotted lines) with or (solid lines) without clusters from chimeric eCLIP (using a cutoff of average 
RPMC≥100). (I) Lines indicate sets of genes with chimeric miR-124 clusters only in (green) 
3’UTR, (blue) coding sequence, or (orange) intronic regions, versus (black) all genes or (dotted 
black) all genes with TargetScan7.2 predicted miR-124 targets. 
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Supplemental Figure 6. 
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Validation of regulated miRNA targets with miRNA over-expression. (A-C) Points indicate per-
miRNA abundance from small RNA-seq after miR over-expression. Shown are (A) two miR-124 
replicates, (B) two miR-1 replicates, and (C) one replicate of miR-124 over-expression versus 
miR-1 over-expression. (D-E) Points indicate per-miRNA abundance within chimeric reads for 
chimeric eCLIP experiments performed after (D) two replicates of miR-124 over-expression or 
(E) two replicates of miR-1 over-expression. (F) Points indicate gene (x-axis) average 
expression (log2(DESeq2 normalized read counts)) and (y-axis) fold-change in miR-1 over-
expression versus mock transfection, with significant differential expression indicated in red 
(DESeq2 p-value < 0.05). (G) Stacked bars indicate number of differentially expressed genes 
upon (left) miR-124 or (right) miR-1 over-expression, separated by whether they contain a 
match against the miRNA seed region (positions [2-7]). (H) Lines show -log10 transformed 
hypergeometric p-values of enrichment of each of 2,332 6-mers complementing miRBase 
human miRNAs in [2:7] and [3:8] positions in growing bins of 3’UTR sequences of all expressed 
genes. Genes were sorted from down- to up-regulated upon miR-1 over-expression using test 
statistic associated with expression fold-change. (I) For indicated gene classes, points indicate 
fold-enrichment in miR-1 over-expression. Red line indicates median, and blue boxes indicate 
25th to 75th percentiles. Gene classes include those with TargetScan7.2-predicted miR-1 targets 
and genes containing chimeric eCLIP clusters meeting indicated reads per million (RPM) cutoff 
(average across two replicates) for either total (non-enriched) or miR-1 probe-enriched chimeric 
eCLIP. Plots were generated using the MATLAB ‘plotSpread’ package. (J-K) Cumulative 
empirical distribution plots show fold-enrichment in miRNA over-expression for (J) miRNA-124 
and (K) miRNA-1. Lines indicate sets of genes (green, dotted line) with reproducible chimeric 
clusters (using a cutoff of average chimeric read RPMC≥100 and IDR > 540) from both probe-
enriched and total chimeric eCLIP, (green, solid line) with clusters in probe-enriched eCLIP only, 
or (black) all genes. Significance was determined by two-tailed Kolmogorov-Smirnov test. (L-M) 
For indicated gene classes, points indicate fold-enrichment in (L) miR-124 or (M) miR-1 over-
expression. Red line indicates median, and blue boxes indicate 25th to 75th percentiles. Gene 
classes include sets of genes with or without TargetScan7.2-predicted miRNA interaction sites 
versus sets of genes with or without clusters from chimeric eCLIP (using a cutoff of average 
RPMC≥100 and IDR > 540). Significance was determined by two-tailed Kolmogorov-Smirnov 
test. (N) Cumulative empirical distribution plots show fold-enrichment in miRNA over-expression 
for miRNA-1. Significance was determined by two-tailed Kolmogorov-Smirnov test. Lines 
indicate sets of genes with chimeric miR-1 clusters only in (green) 3’UTR, (blue) coding 
sequence, or (orange) intronic regions, versus (black) all genes or (dotted black) all genes with 
TargetScan7.2 predicted miR-1 targets. 
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Figure 7. 
Deep profiling of miRNA interactomes in HEK293T. (A) Bars indicate the number of chimeric 
reads identified in prior chimeric CLIP publications or in this study, with zoomed in axis as 
indicated. Prior publications reflect the total number of chimeras as described in the publication. 
(B) Properties of the merged with-gel chimeric eCLIP data for the top 46 human (hsa-) miRNAs 
which each had more than 10,000 chimeric reads. (top) Bar indicates number of chimeric reads 
for each miRNA. (middle) Stacked bar indicates the number of significant (p ≤ 10-5) CLIPper 
clusters from chimeric reads for each miRNA, separated by overlapping annotation region. 
(bottom) On logarithmic scale, points indicate the number of unique genes containing significant 
clusters in either (tan) 3’UTR regions only or (orange) 3’UTR or CDS regions. See 
Supplementary Fig. 8 for merged no-gel data. (C) For each of the top 46 miRNAs, lines indicate 
the percent of clusters containing either (colors) the indicated five 6-mers, or (black histogram) 
all other 6-mers. Red line indicates mean of all other 6-mers.  
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Supplementary Figure 7 
Deep profiling of miRNA interactomes in HEK293T. Properties of the merged no-gel chimeric 
eCLIP data for the top 52 miRNAs (which each had more than 10,000 chimeric reads). (top) Bar 
indicates number of chimeric reads for each miRNA. (middle) Stacked bar indicates the number 
of significant (p ≤ 10-5) CLIPper clusters from chimeric reads for each miRNA, separated by 
overlapping annotation region. (bottom) On logarithmic scale, points indicate the number of 
unique genes containing significant clusters in either (tan) 3’UTR regions only or (orange) 
3’UTR or CDS regions. 
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