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Abstract

The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for
these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-
62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan.
Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating
lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific
isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream
consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression
of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase
in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances
intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the
other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are
expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the
intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably,
increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in
aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan
during the normal aging process.
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Introduction

The normal aging process involves the deterioration of a variety

of tissues. In Caenorhabditis elegans, this includes loss of mobility and

muscle cellular organization, decreased pharyngeal pumping,

ectopic neuronal branching, deterioration of synapse function,

and degeneration of the intestine [1,2,3,4,5]. The deterioration of

the intestine is particularly striking, as the normal lumenal

structure and even entire nuclei are lost in old worms [5]. One

approach to understanding the intrinsic process of aging is to find

mechanisms responsible for these changes that occur during

normal aging [6].

Genome-wide microarray studies of aging in C. elegans have

identified over a thousand transcripts that significantly increase or

decrease in expression with age, covering a wide array of tissue-

types and functions [7,8,9,10]. Genes that are altered between

young and old include not only downstream effects of aging, but

more intriguingly may also reflect changes that are causal for tissue

decline. Indeed, variability in the expression of a number of these

age-regulated genes predicts remaining lifespan of individual

worms, indicating that these genes can serve as biomarkers of

physiological aging [11]. However, the genetic and regulatory

mechanisms underlying these changes are poorly understood.

In an effort to link gene expression changes during aging to a

regulator that mediates longevity, Budovskaya et al. identified a

hypodermal developmental circuit involving GATA transcription

factor genes elt-3, elt-5, and elt-6 as an example of a developmental

circuit affecting lifespan [10]. Expression of elt-3 declined with age

independently of tested stress and damage signals, and increased

activity of elt-3 led to increased lifespan. These results suggest that

mis-regulation of developmental pathways during aging, including

the elt-3 pathway, may be an intrinsic property limiting lifespan of the

organism [10]. There are many other transcription factors have been

linked to longevity through the insulin signaling, dietary restriction,

nutrient sensing, and stress-response pathways that may also be

involved in orchestrating the normal aging process (reviewed in [12]).
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Here we use a novel genomics approach based upon screening

large-scale transcription factor target datasets generated by the

modENCODE project to identify potential transcriptional regu-

lators of age-dependent expression in C. elegans (E.V.N. and S.K.K.

unpublished data). The most promising transcription factors identi-

fied by this approach include not only regulators involved in stress

response pathways, but also developmental regulators. One such

factor, UNC-62, is the C. elegans ortholog of Hox co-factor

Homothorax (Hth/Meis). UNC-62 plays essential roles in

development of the nervous system, hypodermis, and vulva

[13,14,15,16], but knockdown of unc-62 beginning in adulthood

extends lifespan by ,40% [17]. Focusing on the intestine, we

identified that intestine-specific knockdown of UNC-62 recapitu-

lates this extended lifespan and that UNC-62 decreases expression

with age in the intestine. A number of mechanisms can be linked

to this extension of lifespan, including shutting off yolk protein

(vitellogenin) gene expression, preventing aberrant expression of

neuronal genes in the intestine in old age, and increasing

transcriptional resources for general intestinal gene expression.

These mechanisms illustrate how antagonistic pleiotropy and

allocation of cellular resources between somatic health and fertility

can play important roles in specifying longevity.

Results

In order to uncover potential regulators of aging, we identified

transcription factors with targets that are enriched for age-

regulated genes. To identify targets bound by each transcription

factor, we queried the data from 98 ChIP-seq datasets covering 57

transcription factors (many in multiple developmental stages)

generated by the C. elegans modENCODE consortium [18]. For

each ChIP seq experiment, we obtained DNA regions bound by

the transcription factor identified by the PeakSeq algorithm (q-

value,1025) [19]. We noted that for each transcription factor,

some binding sites are factor-specific (bound by only a few other

transcription factors) whereas others are general (including the

extreme case of HOT regions bound by more than .65% of

transcription factors assayed)(Figure S1A–S1B) [20]. Compared to

general binding sites, factor-specific binding sites are associated

with genes whose expression and biological function are more

likely to be shared with the transcription factor (E.V.N. and

S.K.K. unpublished data; [20]). Thus, to improve the association

between the presence of a binding site in ChIP-seq data and

regulation of expression of nearby transcripts, we narrowed the

targets to those that are factor-specific, defined as regions

significantly enriched for a given transcription factor and up to 8

other transcription factors out of the 57 total transcription factors

assayed by the modENCODE consortium(E.V.N. and S.K.K.

unpublished data; [20]).

Each set of factor-specific targets was then independently

compared to a set of 1106 age-dependent genes obtained from

DNA microarray experiments [10], with significant enrichment in

the overlap between the two sets identified using Fisher’s exact test.

At an enrichment cutoff of p,1025, we identified 9 transcription

factors as potential aging regulators (E.V.N. and S.K.K. unpublished

data). These include transcription factors that have been previously

associated with aging and longevity, such as oxidative damage

response factor skn-1 [21] and developmental regulator elt-3 [10].

One transcription factor with known roles during embryonic

and larval development, unc-62, has been shown to modulate

lifespan [17] but was not previously linked to changes that occur

during the normal aging process. UNC-62 is the C. elegans ortholog

of Drosophila Homothorax and mammalian Meis, which are co-

factors for HOX transcriptional regulators [22]. During develop-

ment, knockdown of unc-62 activity yields phenotypes in matura-

tion of the vulva, hypodermis, and the nervous system

[13,14,15,16]. However, during adulthood, reduction of unc-62

activity by RNAi extends lifespan by ,30–40% (Figure 1A) [17].

Using the 1272 UNC-62 binding sites identified by the

modENCODE consortium in day 4 young adult worms, we

identified 399 factor-specific binding sites associated with 310

target genes. This set of direct targets includes 52 genes that

show altered expression with age (2.9-fold enriched, p,10215)

(Figure 1B). In this work we characterize a new role for unc-62 in

adults in order to explore the connection between an essential

developmental regulator and aging.

The intestine-specific unc-62(7a) isoform decreases with
age in the intestine

To investigate the role of unc-62 in specifying lifespan, we first

set out to define the tissues in which it is expressed. Previous

experiments using a 2.9 kb proximal promoter for unc-62

identified expression in vulval precursor cells, neurons, and some

hypodermal cells [15]. Additionally, SAGE-tag sequencing from

dissected intestines showed that unc-62 is expressed in the intestine

[23]. In order to characterize the expression of unc-62 further, we

made use of a GFP reporter for unc-62 in its full genomic context.

This strain was generated by creating a modified fosmid with GFP

inserted at the C-terminus of UNC-62, and includes regulatory

elements contained within introns as well as distal promoter

elements (Figure 1C). Biolistic bombardment was then used to

obtain a strain expressing a low-copy, integrated UNC-62:GFP

transgene. This fusion was sufficient to rescue embryonic and

larval lethality phenotypes of the unc-62 deletion allele

(s472)(Figure 1D).

Using this translational fusion, we observed strong UNC-62:GFP

expression in a variety of tissues in the hermaphrodite, including the

vulval precursor cells, the ventral cord motorneurons and other

neurons, the hypodermis, and the intestine (Figure 1E). Expression

in neurons and hypodermis is visible throughout development and

into adulthood; expression in vulval precursor cells is only seen

when that lineage emerges in the L3 and L4 stages (data not shown).

Author Summary

The normal aging process in Caenorhabditis elegans
involves coordinated changes in expression of about a
thousand genes. In order to find upstream regulators
responsible for these aging genes, we used a genomics
approach to screen for transcription factors that bind to
them. We focused on one such regulator, unc-62/Homo-
thorax, that encodes a co-factor for a Hox transcription
factor. Although essential for development, expression of
unc-62 in adults limits lifespan. We find that unc-62 is a
transcriptional activator of yolk protein genes, which are
synthesized in the intestine and encode essential nutrients
for progeny but accumulate to toxic levels with age.
Additionally, analysis of unc-62 knockdown indicates that
when vitellogenin transcription is decreased, transcription
of intestinal genes with somatic functions increases. Thus,
activation of yolk protein gene expression by unc-62 is
both a burden on maternal health and a necessary
resource for embryonic growth. Surprisingly, we also
found that the intestine of old worms has novel expression
of non-intestinal proteins that are toxic when expressed in
the intestine and are activated by unc-62 in old age. Our
work on transcriptional regulation of intrinsic gene
expression differences during normal aging has revealed
insights into the mechanisms that limit lifespan.

Regulation of C. elegans Aging by unc-62
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For the intestine, we observed strong expression beginning in the L3

stage and continuing into adulthood (Figure 1E).

Alternative RNA splicing of unc-62 produces isoforms that differ

in usage of the seventh exon (7a and 7b), which encodes the N-

terminal region of the UNC-62 TALE homeodomain [13].

Transcripts including exon 7a increase in abundance more than

100-fold between embryos and adults, whereas transcripts

containing 7b are expressed roughly equivalently throughout

development [13]. To query the tissue-specific expression of these

isoforms, we generated UNC-62:GFP reporters that express only

UNC-62(7a) or UNC-62(7b). These reporters were made by

inserting a stop codon in exon 7b into the UNC-62:GFP

translational reporter such that it can only express UNC-

62(7a):GFP, or a stop codon in exon 7a such that the reporter

can only express UNC-62(7b):GFP (Figure 2A). Strains stably

expressing either of these isoform-specific GFP reporters were then

generated by biolistic bombardment. Fluorescent imaging of these

strains indicated that UNC-62(7a) was predominantly expressed in

the intestine starting in L3 and continuing through adulthood. In

contrast, UNC-62(7b) was expressed in neurons, the ventral nerve

cord, vulval precursor cells, and hypodermis beginning in embryos

and continuing through adulthood (Figure 2A).

Figure 1. UNC-62 binds age-regulated genes and modulates lifespan. (A) Adult-specific knockdown of unc-62 extends lifespan by 30%.
Approximately 150 day 1 adult wild-type (N2) worms were placed on bacteria expressing dsRNA targeting either unc-62, or control bacterial
containing an empty vector. The x-axis indicates days of adulthood, and the y-axis indicates the percent of worms that remain alive at that age. The
lifespan assay was performed five times (p,1025 for each assay; one representative lifespan assay is shown). See Table S2 for lifespan data. (B) Hox
co-factor UNC-62 Homothorax/Meis targets in day 4 of adulthood (Young Adults) show significant overlap with age-regulated transcripts [10,18].
Only factor-specific binding sites bound by less than 10 out of 57 transcription factors profiled by the modENCODE consortium were utilized.
Enrichment p-value was determined by Fisher’s Exact test. (C) Schematic of the UNC-62:GFP fosmid used to generate an UNC-62 fluorescent reporter.
A GFP tag was inserted at the C-terminus of UNC-62 in a fosmid containing all unc-62 exons and introns, as well as ,18.5 kb of 59 promoter sequence.
(D) The UNC-62:GFP fosmid-based transgene can rescue the embryonic lethality defects of both an unc-62 null mutation (s472; denoted 2) as well as
a weaker mutation in unc-62 exon 7b (e644, denoted 7b(2)) [13]. 7b(+) refers to a transgene that expresses only the unc-62 exon 7b isoform. Circles
indicate the number of viable progeny observed from 5 unmated hermaphrodites of each genotype, with the mean indicated by a horizontal line. (E)
In hermaphrodites, UNC-62:GFP is expressed in intestine (int), neurons (neu), ventral nerve cord (vnc), vulval precursor cells (not shown), and (right)
hypodermis (hyp). UNC-62 intestinal expression is stage-specific: intestine expression in L2 and earlier stages is weak or not visible (top), whereas
intestinal expression is dramatically induced by the L4 stage (bottom).
doi:10.1371/journal.pgen.1003325.g001

Regulation of C. elegans Aging by unc-62
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We next determined whether expression of the unc-62 isoforms

change with age in the intestine. We measured expression of the

intestinal unc-62(7a) isoform during normal aging, and observed

that it decreases in the intestine by day 8 of adulthood (,26%

decrease, p,10210)(Figure 2B–2C, Figure S2A). A similar

decrease was observed in whole-worm unc-62(7a) mRNA levels

between day 2 and day 8 of adulthood when measured by qPCR

(Figure S2B). In contrast, unc-62(7b) was not observed in the

intestine at any age. Thus, the decrease in expression of intestinal

unc-62(7a) with age is not caused by changes in alternative splicing,

but rather by a decrease in the level of transcription.

unc-62 acts in the intestine and hypodermis to modulate
lifespan

As unc-62 is expressed in a variety of tissues, we wanted to

identify the tissues in which unc-62 functions to affect lifespan of

the entire organism. To do this, we performed RNAi knockdown

of unc-62 in strains that generate an RNAi response only in specific

tissues. These strains contain a mutation in the RNAi pathway (rde-

1) that leads to inactivation of the RNAi response, as well as a

transgene expressing rde-1 under a tissue-specific promoter to

restore the RNAi response only in that tissue (Figure 3A) [24,25].

We found that knockdown of unc-62 either only in intestine or only

in the hypodermis was sufficient to cause a ,30% extension of

median lifespan (Figure 3C–3D). As a control, we crossed in the

unc-62:GFP transgene and observed that GFP RNAi reduced GFP

expression only in the proper tissue for the intestinal- and the

hypodermal-specific RNAi strains (Figure S3). However, unc-62

RNAi did not have a significant effect on longevity in muscle

tissue, neuronal tissue or the uterus (Figure 3E–3G). These results

indicate that wild-type unc-62 activity in the intestine and

hypodermis is critical for its role in limiting wild-type lifespan. In

Figure 2. Alternative splicing of UNC-62 generates intestine-specific unc-62(7a) and neuronal/hypodermal-specific unc-62(7b)
isoforms. (A) Strains expressing isoform-specific reporters for unc-62(7a) and unc-62(7b) show stage- and tissue-specific expression. (top) Beginning
with the transgenic fosmid described in Figure 1C, stop codons were inserted into unc-62 exons 7a or 7b by site-directed mutagenesis to obtain
isoform-specific reporters. During this process, a kanamycin resistance cassette was inserted into the eighth intron of unc-62. (bottom) Alternative
isoforms of UNC-62 show tissue-specific expression in adults. (left) UNC-62:GFP is observed in intestinal, neuronal, and hypodermal cells. (center)
UNC-62(7a):GFP is highly expressed in the intestine in the L4 larval stage and young adults, but is not visible in other tissues. (right) UNC-62(7b):GFP is
not observed in the intestine, but is expressed in the hypodermis (not shown), the ventral nerve cord, and other neurons. Strains were imaged in a
glo-4(ok623) background to limit gut autofluorescence. (B) UNC-62(7a):GFP expression decreases between day 1 and day 8 of adulthood. Strain
contains glo-4(ok623) to reduce gut autofluorescence, and expression was quantified only in the first pair of intestinal nuclei (dotted red circles). (C)
Quantification of UNC-62(7a):GFP as shown in (B). Bars indicate mean fluorescence (in arbitrary units) observed from populations of at least 32 worms
measured at different days of adulthood, with error bars indicating standard error of the mean. Day 1 expression was significantly higher compared
to expression in days 3, 8, or 12 (p,1024 by Student’s t-test) in two independent experiments (see Figure S2).
doi:10.1371/journal.pgen.1003325.g002
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this work, we primarily focus on intestinal activity of unc-62 and

the intestine-specific unc-62(7a) isoform.

Next, we asked at what time unc-62 acts to limit lifespan. Loss of

unc-62 during development leads to severe developmental defects,

indicating that unc-62 is beneficial up until adulthood. In contrast,

unc-62 RNAi started at the first day of adulthood extends lifespan

(Figure 1A). We found that unc-62 RNAi beginning at day five of

adulthood could still significantly extend lifespan after the end of

self-fertility (Figure S4A). This indicates that even after day five,

unc-62 still performs functions that are detrimental and that limit

the lifespan of wild-type worms.

Stage-specific binding of targets by the UNC-62
Homothorax transcription factor

In addition to the adult ChIP-seq targets described earlier, we

analyzed UNC-62 ChIP-seq targets identified in the earlier L3

larval stage, when unc-62 appears predominantly as the 7b isoform

(E.V.N. and S.K.K. unpublished data). In the L3 stage, the ChIP seq

experiments identified 1193 UNC-62 binding sites, of which 251

are factor-specific. However, many young adult UNC-62 binding

sites showed little enrichment in the L3 stage ChIP-seq experiment

(Figure 4A and E.V.N. and S.K.K. unpublished data). We compared

the 151 genes associated with these UNC-62 L3 binding sites to

the set of aging-regulated genes and found only 10 UNC-62 L3

targets that are also age-dependent, which is not significantly

enriched (.98-fold, p..1). Thus, although the adult UNC-62

targets tend to be differentially expressed with age, the UNC-62

targets in L3 larvae are not. The genes bound by UNC-62 also

have differential tissue-specificity: L3 larval targets are enriched for

neuronal-enriched expression, whereas young adult targets are

instead enriched for intestine-specific expression (E.V.N. and

S.K.K. unpublished data). These distinctions corresponds to the

pattern of alternative splicing of UNC-62; i.e., up until the L3

stage unc-62 is expressed predominantly as the unc-62(7b) isoform

in neurons and the hypodermis, whereas in adults unc-62 appears

as the unc-62(7a) isoform in the intestine and as the unc-62(7b)

isoform elsewhere (E.V.N. and S.K.K. unpublished data). We focused

our analysis on the young adult targets as these targets are

enriched for genes with age-dependent expression.

UNC-62 is a direct and necessary activator of intestinal
yolk protein genes

To understand the molecular effects of unc-62 knockdown in

adults, we identified the targets of UNC-62 that are altered when

unc-62 expression is knocked down. Poly(A)+ RNA was prepared

from replicates of young adult hermaphrodites grown on either unc-

62 RNAi or empty vector RNAi. We then prepared 39 end-enriched

RNA-seq libraries [26], with each sample barcoded to allow for

multiplex sequencing. The triplicate libraries of empty vector and

unc-62 RNAi were separately pooled and sequenced, yielding .14

million mapped reads for each sample (Figure 4B and Table S1).

To identify transcripts with consistently altered expression upon

unc-62 RNAi treatment, we developed an approach based upon a

Rank Product method used for DNA microarray analysis (Figure

S5) [27]. Our analysis yielded 182 transcripts with altered

expression upon unc-62 RNAi treatment at a false discovery rate

of 10%, with 115 transcripts showing decreased expression and 67

showing increased expression upon unc-62 RNAi (Figure 4C and

Dataset S1). Of these 182 unc-62 dependent transcripts, only ten

are directly bound by UNC-62 in young adults (factor-specific

binding sites with q-value,1025) indicating that the remainder are

indirect targets (Table S3).

Figure 3. UNC-62 knockdown extends lifespan in intestinal and hypodermal tissues. (A) Tissue-specific RNAi is achieved in worms by
starting with a strain deficient for the RNAi pathway due to the rde-1(ne219) mutation. A transgene expressing rde-1 under a tissue-specific promoter
(examples shown use elt-2 to drive intestine-specific expression, or hlh-1 to drive muscle-specific expression) rescues the RNAi pathway only in the
desired tissue. (B) unc-62 RNAi extends lifespan by ,30% (p,1025) in wild-type worms. (C–D) A ,30% extension is observed when unc-62 is knocked
down in (C) a strain expressing rde-1 from the elt-2 intestinal promoter (strain OLB11) or (D) the lin-26 hypodermal promoter (strain NR222). (E–G) In
contrast, unc-62 knockdown in (E) neurons and vulval precursor cells (a short unc-62 promoter in an rde-1(ne219);rrf-3(pk1426) background; strain
NK742), (F) muscle (hlh-1 promoter; strain NR350), or (G) uterine cells (fos-1A promoter in an rde-1(ne219);rrf-3(pk1426) background; strain NK640) did
not significantly extend lifespan (p.0.01). The rrf-3(pk1426) mutation provides increased RNAi sensitivity in neuronal cells. Except for uterine-specific
RNAi, lifespans were performed two or more times (Table S2). Lifespan data shown is aggregated from multiple simultaneous experiments.
doi:10.1371/journal.pgen.1003325.g003

Regulation of C. elegans Aging by unc-62
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We found that three of the eight genes that are bound and

activated by UNC-62 are vitellogenin genes. C. elegans contains 6

vitellogenin transcripts (vit-1 through vit-6) that encode the major

yolk proteins [28]. These transcripts are specifically expressed in

the intestine during the reproductive period, and vitellogenin

proteins are exported out of the intestine into oocytes [29]. RNA-

seq experiments indicated that expression of all six vitellogenin

transcripts is strongly dependent on unc-62 activity, as there is a 4–

10-fold decline in expression for vit-2, vit-3, vit-4, vit-5 and vit-6 and

a ,100-fold decline for vit-1 in unc-62 RNAi worms as compared

to controls (Figure 5A). unc-62 RNAi also results in a strong

decrease in the level of expression of a VIT-2:GFP translational

reporter, indicating that protein as well as mRNA levels of vit-2 are

dependent upon UNC-62 activity (Figure 5B). RNAi targeting

exon 7a of unc-62 results in a decrease of VIT-2:GFP expression,

whereas RNAi targeting exon 7b does not, indicating that the unc-

62(7a) isoform activates vitellogenin expression (Figure 5B).

In addition to the significant association observed at three of the

six vitellogenin loci in the initial ChIP-seq analysis (q-

value,1025)(Table S3), we found that the remaining three

vitellogenin loci were bound by UNC-62 in adults with q-

value,0.01 (Figure 5A). Interestingly, interaction with vitellogenin

promoters is not observed in ChIP-seq of UNC-62 in L3 stage

worms, indicating that UNC-62 is bound to the vitellogenin

Figure 4. Identification of direct and regulated targets of UNC-62 in adults by ChIP–seq and RNA–seq. (A) An example of UNC-62 ChIP-
seq read density at a significantly enriched binding site is shown. Top tracks show read density in ChIP-seq experiments for UNC-62 in young adults
(green) and L3 larvae (blue) as well as non-immunoprecipitated input control (grey). Boxes underneath the read density tracks indicate significant
binding sites (q-value#1025). Bottom tracks indicate genes (with coding exons in thick blue boxes). (B) Examples of unc-62 RNAi 39-end enriched
RNA-seq data is shown. We performed three independent experiments in which we fed worms either unc-62 RNAi or control bacteria, isolated mRNA
and generated RNA-seq libraries, and sequenced these libraries on the Illumina HiSeq platform. For the ilys-5 (left) and vit-2 (right) genomic regions,
reads map to annotated exon regions on the proper strand, and are enriched at the 39 end of the transcript. Read densities are displayed for control
(black) and unc-62 RNAi (blue), scaled as reads per million uniquely mapping reads. (C) Rank Products-based analysis (based on [27]; see Methods and
Figure S5) to identify genes reproducibly altered across all three biological replicates identified 67 genes significantly increased and 115 genes
significantly decreased upon unc-62 RNAi at a 10% false positive rate.
doi:10.1371/journal.pgen.1003325.g004
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promoters in adults but not young larvae. We validated binding of

UNC-62 to the promoter region of the vit-2 and vit-6 genes in

adults by ChIP-qPCR, observing 5- to 15-fold enrichment of

UNC-62 binding to these regions compared to control promoter

regions (Figure S6).

Previous experiments have identified two sequence motifs that

are critical sequence elements shared among all 6 vitellogenin

promoters: GATA-motif VPE-2 (CTGATAA) and VPE-1 (ATT-

GACA) [30]. The VPE-1 motif contains the core TGACA

sequence bound by Homothorax in Drosophila [31]. We used a de

novo motif search among all UNC-62 young adult binding sites and

found that a motif with consensus sequence ATTGACA was the

most significantly enriched motif, and that the seven base

ATTGACA sequence itself was 4.3-fold enriched in UNC-62

binding sites (Figure 5C, Figure S7). The finding that UNC-62 is a

direct and necessary regulator of all six vitellogenin genes,

combined with the fact that the VPE-1 motif perfectly matches

the UNC-62 motif identified from a de novo motif search, suggests

that UNC-62 directly binds to the VPE-1 element and activates

vitellogenin expression.

The six vitellogenin genes are among the genes that show the

greatest decrease in expression with age in the entire C. elegans

genome, with a 16-fold decrease in expression between young (day

2) and old (day 11) adulthood (Figure 5D) [10,32]. Having

observed that UNC-62 binds to and activates the vitellogenin

genes in young adults, we next asked whether residual levels of

vitellogenin expression in old adults were still dependent on UNC-

62 activity. We micro-dissected the intestine from day 15 adult

worms fed either control or unc-62 RNAi bacteria, and performed

qRT-PCR on RNA isolated from the intestines to measure levels

of vit-2 and vit-6 expression. Despite expression levels decreasing

with age, vit-2 and vit-6 expression declined further when unc-62

was knocked down in old adults (Figure 5E), consistent with

residual vitellogenin expression in old age remaining activated by

unc-62.

Indirect targets of unc-62 are enriched for genes altered
during aging

To further understand the roles of unc-62 during aging, we

analyzed the 182 transcripts that show altered expression in unc-62

RNAi-treated worms, consisting of 67 transcripts that increase

expression and 115 transcripts that decrease expression. The 115

targets that are (directly or indirectly) activated by wild-type unc-62

show a strong enrichment for genes specifically expressed in the

hypodermis (2.6-fold; p,1025). Notably, 41 of these 115 genes are

collagen genes, out of a total of 90 collagen genes quantified in the

RNA-seq experiment (29-fold enriched, p,10215)(Figure 6A).

These unc-62-activated genes also include 38 that decrease in

expression during normal aging (a 3.9-fold enrichment, p,10220)

[10], including 26 of the 41 unc-62-activated collagen genes

(Figure 6A–6B). These findings suggest that changes in gene

expression of hypodermal genes upon unc-62 knockdown (partic-

ularly, collagen genes) are similar to changes normally observed as

adult worms age; i.e., unc-62 RNAi mimics the normal aging

process in the hypodermis.

Next, we considered the genes with increased expression upon

unc-62 RNAi. At the tissue-level, we found that 32 of these genes

show intestine-enriched expression in one or more datasets (2.6-

fold enriched, p,10210). These genes that are repressed by wild-

type unc-62 activity (although not bound by UNC-62 directly) also

show a 3.2-fold enrichment for genes that decrease in expression

with age (p,1024)(Figure 6C). Thus, unc-62 RNAi indirectly leads

to increased expression of genes that normally decline with age

and are primarily expressed in the intestine.

A possible explanation for the overall increase in gene

expression in the intestine in unc-62 RNAi worms could be that

it is an indirect consequence of shutting down vitellogenin gene

expression. The vitellogenin transcripts are among the most

highly-expressed transcripts in C. elegans; vit-4 and vit-6 are the sole

non-ribosomal protein genes among the ten highest expressed

genes in young adults, and the six vitellogenin genes comprise

,3% of all mapped reads in young adults in RNA seq experiments

despite being expressed solely in intestinal cells (Table S1). Thus,

as an indirect consequence of dramatically reducing vitellogenin

gene expression by unc-62 RNAi, transcriptional machinery that

was previously allocated to express vitellogenin genes may become

available to activate transcription of other genes.

This model posits that the decrease in vitellogenin transcription

would lead to a generalized increase of the remaining genes

expressed in the intestine. To test this, we identified 1699 genes

that are intestine-enriched [23,33,34] as well as the subset of 291

that decrease in expression with age [10]. We observed that

intestinal genes in general, and particularly those that decrease

expression with age, are significantly shifted towards increased

expression upon unc-62 RNAi (both p,10220 by Kolmogorov-

Smirnov test)(Figure 6D). In contrast, there was no shift observed

either for neuron-enriched or muscle-enriched genes (p.0.01 by

Kolmogorov-Smirnov test)(Figure S8). Thus, in addition to the 67

genes that were identified to be significantly altered upon unc-62

RNAi, there is a general increase in expression of intestinal genes

in unc-62 RNAi worms that may provide an indirect benefit

contributing to longer life. As intestinal gene expression generally

declines with age, this broad effect of gene activation by unc-62

RNAi opposes the normal aging process in the intestine.

The above findings suggest that unc-62 knockdown may delay

the age-related decay of the intestine. In order to assay the

morphology of the intestine, we examined intestinal expression of

an opt-2:GFP reporter. opt-2 encodes an intestinal low affinity/high

capacity oligopeptide transporter that localizes to the apical

membrane of the intestine, and is visible as a single tubular

Figure 5. UNC-62 binds to and activates expression of all six C. elegans yolk protein genes. (A) The thick and thin blue lines indicate the
exon and intron structure of each of the six vitellogenin loci. Red boxes indicate the position of regions significantly enriched in UNC-62 ChIP-seq of
day 4 adult (YA) worms. (*) indicates q-value,0.001 and (**) indicates q,1025 binding sites. Below each gene, RNA-seq results are displayed for
worms fed either unc-62 RNAi or control bacteria. Bars indicate the mean, and error bars the standard deviation, of sequencing read density (reads per
million mapped reads) for vitellogenin genes in triplicate RNA-seq experiments. (B) Bars indicate mean, and error bars indicate standard deviation, of
measured fluorescence of a vit-2:GFP reporter under various RNAi conditions. Expression in ,15 worms was quantified using ImageJ. (C) (top) A de
novo motif search in UNC-62 young adult binding sites with RSAT [58] identifies a TGATTGACA motif as the prominent sequence motif. (bottom) This
motif is similar to the ATTGACA VPE-1 vitellogenin regulatory motif previously described [30]. (D) All six vitellogenin genes decrease expression with
age (as assayed by whole-worm microarrays of 2, 5, 8, and 11 day old adult worms [10]). Bars indicate mean expression observed across replicated
arrays, with error bars indicating standard deviation. (E) UNC-62 activates vitellogenin expression in old adults. Bars indicate expression of two
biological replicates of vit-2 (black) and vit-6 (grey), determined by qRT-PCR of RNA isolated from ,100 dissected intestines of day 1 adults and day 15
adults fed either control or unc-62 RNAi bacteria. Error bars indicate standard deviation of triplicate qPCR technical replicates. Statistical significance is
not indicated as this experiment included only two biological replicates.
doi:10.1371/journal.pgen.1003325.g005
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structure tracking with the inner intestinal membrane in young

adults (Figure 6E) [35]. During normal aging, this pattern rapidly

degrades by day three of age (long before worms begin to die from

old age). In unc-62 RNAi worms, the age-related deterioration of

intestinal morphology (measured by presence of apical expression

of opt-2:GFP) is delayed (Figure 6E). In summary, knockdown of

unc-62 increases lifespan, increases the period of healthy intestine

morphology, and ameliorates intestinal expression changes that

occur during wild-type aging.

Expression of a new class of UNC-62 targets in the
intestine in old age

As part of our analysis, we discovered a set of genes bound by

UNC-62 in young adults that, during development, are enriched

for expression in neuronal cells as opposed to the intestine. We

next examined whether expression in the intestine of these targets

changes during normal aging, and whether their expression is

dependent on unc-62 activity.

To profile expression changes with age in the intestine, we

micro-dissected young and old intestines, isolated RNA, and

performed qPCR to assay expression of these UNC-62 targets. In

these samples, control transcripts known to be specifically

expressed in the intestine showed a greater than 10-fold

enrichment compared to non-intestinal transcripts (Figure S9).

We randomly selected eight UNC-62 young adult targets (that we

refer to as Class N) that have neuronal-enriched expression

patterns but had significant UNC-62 binding in adults by ChIP-

seq, allowing for the possibility that their expression is under

UNC-62 control during normal adult aging. As negative controls,

we used ten genes with neuronal-enriched expression that were

bound by UNC-62 in early development, but no longer identified

as significantly bound in adults.

We observed that expression of the eight UNC-62 Class N

young adult targets in dissected intestines showed a significant shift

towards increased expression in old age (p = 0.013 by Wilcoxon

rank-sum test)(Figure 7A). Specifically, five of the eight adult

targets increased more than two-fold in expression with age

(including one gene (ins-7) which has previous been shown to

increase with age in the intestine [36]), whereas none of the ten

control targets did so. To determine whether expression of class N

genes was dependent on UNC-62 activity, we obtained RNA from

micro-dissected intestines from old adults grown on unc-62 RNAi.

We found that four (tsp-1, max-1, ins-7, and T05B11.1) of the five

class N genes that increase expression by two-fold in intestines with

age showed decreased expression upon unc-62 RNAi (Figure 7B).

In summary, class N genes are an intriguing set of unc-62-

dependent genes that are expressed predominantly in neuronal

tissues in development, but then become expressed in the intestine

in old adults.

Late-life expression of at least two class N genes (max-1 and ins-

7) appears to be detrimental, as RNAi treatment or loss-of-

function mutations in these two genes have been shown to extend

lifespan. The first, max-1, encodes a PH/MyTH4/FERM domain-

containing protein that is required for proper motor axon

projections [37], and max-1 RNAi treatment increases lifespan

by ,5% [38]. The second, ins-7, encodes an insulin/IGF-1-like

peptide that acts as an agonist for the insulin/IGF-1 receptor

DAF-2 [39]. The insulin/IGF-1 signaling pathway ultimately

represses the activity of the FOXO-family transcription factor

DAF-16. When the activity of the insulin/IGF-1 signaling

pathway is low or off, DAF-16/FOXO localizes to the nucleus

and activates expression of beneficial genes that extend lifespan

[12]. Knockdown of insulin ins-7 activity throughout the worm

results in activation of DAF-16/FOXO and extends lifespan, and

intestine-specific over-expression of ins-7 in young adults is toxic

[36]. We verified that knockdown of ins-7 expression specifically in

the intestine can extend lifespan by showing that intestine-specific

RNAi of ins-7 results in an 8.3% extension of mean lifespan

(p = 7.861028 by log-rank test)(Figure S4B).

One possible mechanism contributing to the lifespan extension

seen in unc-62 RNAi worms is that ins-7 expression does not

increase, but instead remains at a low level in the intestine in old

age. As a result, DAF-16/FOXO activity would not be repressed

by ins-7, and could instead remain high in unc-62 RNAi worms as

opposed to being repressed in normal aged worms. According to

this possibility, unc-62 RNAi should result in activation of DAF-

16/FOXO activity and the longevity phenotype should be at least

partially dependent on daf-16 activity. First, we found that unc-62

RNAi results in increased expression of a DAF-16 reporter (sod-

3:GFP [40]) in aged animals, suggesting an increase of DAF-16/

FOXO activity (Figure 7C). As has been previously observed,

increased DAF-16/FOXO activity upon unc-62 knockdown was

not observed in young adults (when ins-7 is not yet induced in the

intestine) [17]. Second, we found that a daf-16 mutation suppresses

the longevity caused by unc-62 RNAi, indicating that the benefit

conferred by unc-62 knockdown requires daf-16 activity

(Figure 7D). These results indicate that extended longevity

conferred by unc-62 RNAi involves preventing ins-7 expression

in old age, which results in activation of the insulin signaling

pathway and repression of DAF-16/FOXO.

unc-62 RNAi extends the lifespan of glp-1 mutants
It has previously been shown that germline signaling can affect

aging, as glp-1(e2141) mutants that lack the germline show

extended lifespan [41]. We next asked whether the beneficial

Figure 6. UNC-62 RNAi decreases expression of collagen genes and increases expression of intestinal genes. (A) unc-62 RNAi decreases
expression of collagen genes. Rows correspond to 77 collagen genes profiled in both our RNA-seq experiment as well as microarray studies of aging.
Each row shows data for an individual collagen gene. (left) Color indicates RNA-seq fold-change between unc-62 RNAi and control, averaged from
triplicate biological experiments. (right) The four columns indicate expression at day 2, 5, 8, and 11 from whole-worm microarrays (normalized to day
2 expression) (data from [10]). (B) Of the 99 genes down-regulated upon unc-62 RNAi (at 10% FDR) profiled by aging microarrays, 38 also decrease
with age (3.9-fold enriched, p,10220 by Fisher’s exact test). (C) The 48 genes that increase in expression upon unc-62 RNAi (10% FDR) show a
significant overlap with the 556 genes that decrease in expression with age (p,1024) [10]. (D) unc-62 RNAi causes a broad increase in expression of
intestinal genes. The histogram indicates the distribution of genes by average fold-change upon unc-62 RNAi. For 1699 genes with intestine-enriched
expression [23,33,34] as well as the subset of 291 genes that also decrease expression with age [10], we determined the average mean-centered fold-
change from triplicate RNA-seq experiments of unc-62 RNAi as compared to controls. Both intestine-enriched genes (orange) and intestine-enriched
genes that decrease expression with age (pink) are significantly shifted towards increased expression upon unc-62 RNAi (p-value,10220 by
Kolmogorov-Smirnov test). (insert) The percent of genes with fold-change of 1.25 or more are indicated. (E) (left) An OPT-2:GFP reporter was used to
measure intestinal morphology. In young adults, opt-2 localizes to the apical membrane of the intestine (class A). This structure deteriorates in older
worms, as some worms contain the structure through only a portion of their body (class B) and others lack opt-2 expression altogether (class C).
(right) Worms were placed on either unc-62 or control RNAi at day 1 of adulthood, and ,30 worms for each were imaged and annotated at day 3 and
day 6. Stacked bars indicate the percent of worms that were observed as class A (light grey), class B (dark grey), or class C (black).
doi:10.1371/journal.pgen.1003325.g006
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Figure 7. ins-7 and other unc-62-dependent class N targets are activated in the old intestine. (A) Class N unc-62 targets tend to increase
with age in the intestine. Eight class N targets (bound by UNC-62 in the young adult with neuronal-enriched expression in development (dark grey
bars)), as well as ten control targets that have neuronal-enriched expression and are bound by UNC-62 in L3 stage but not the adult stages (light grey
bars), were assayed for age-related changes in the intestine (between day 1 and day 15 adults). Expression in dissected intestines was quantified by
qPCR as described in Methods using a beta-tubulin control (C36E8.5). Bars indicate the ratio of the expression between young and old as measured
by the DDCt method, and error bars indicate standard deviation of technical triplicate qPCR measurements. + indicates transcripts that were
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effects of knockdown of unc-62 were independent of those from

removing a germline by comparing the lifespan of an unc-62

RNAi;glp-1(e2141) double mutant to the lifespan of glp-1(e2141)

single mutants. We found that unc-62 RNAi increased the mean

lifespan of glp-1(e2141) mutants by 28% (p,1025), indicating that

unc-62 activity is still detrimental for lifespan in worms lacking a

germline (Figure S4C). Previous studies have shown that

vitellogenins continue to be expressed in animals lacking a

germline [42,43]. Thus, the lifespan extension by unc-62 RNAi

in a glp-1(e2141) background may reflect the prevention of

vitellogenin accumulation. It may also reflect other downstream

effects of unc-62, including increased availability of transcriptional

resources for intestinal expression and decreased expression of

class N genes in old worms.

Discussion

There are a large number of datasets generated by the

modENCODE project that profile targets of transcription factors

by ChIP-seq. To identify putative aging regulators, we developed

an approach in which we query all transcription factors for those

with directly-bound targets that are enriched for altered

expression during normal aging. In addition to transcription

factors ELT-3 and SKN-1 that have previously been character-

ized as regulators of aging that can modulate lifespan [10,21],

this approach identified factors that had not previously been

linked to gene expression changes that occur during normal

aging. The identification of HOX co-factor UNC-62 (Homo-

thorax/hth/Meis) was particularly interesting, as knockdown of

unc-62 in adults significantly extends lifespan [17] but unc-62

activity is required for embryonic and larval development

[13,14,15,16].

We found that unc-62 acts in the intestine to limit lifespan and

that intestinal unc-62(7a) expression decreases with age. These

results suggest that the age-dependent decrease of unc-62 in the

intestine is likely beneficial rather than detrimental for lifespan.

With regards to unc-62 expression, the young state is thus not a

model for health as compared to the old state, as this would predict

that RNAi of unc-62 in young worms would shorten their lifespan.

In order to better understand why RNAi of unc-62 results in longer

lifespan, we applied a variety of genomics analyses to explore

downstream targets of unc-62 in young and old adults. We

identified three downstream effects of unc-62 activity that can be

linked to the aging process: 1) expression of yolk proteins that

accumulate with age, 2) generalized effects on transcription of a

large number of intestinal genes, and 3) activation of non-intestinal

genes in the intestine in old age. The detrimental effects of unc-62

in adult worms may reflect a combination of these downstream

effects, each partially contributing to the overall limitation of

lifespan.

Intestinal UNC-62 and target yolk proteins decline with
age

The first mechanism that we identify linking unc-62 to aging is

through direct activation of vitellogenin genes in the intestine. We

find that UNC-62 binds to and activates all six vitellogenin genes,

and that the decrease in expression of unc-62(7a) with age parallels

the decline in intestinal expression of vitellogenin genes. These

results suggest that the decline with age of UNC-62(7a) contributes

to decreased expression of vitellogenins with age. In addition to

unc-62/Homothorax, we note that it is possible that the age-

dependent decline of vitellogenin gene expression may also be due

to decreased activity of the GATA transcription factor ELT-2.

ELT-2 is a master regulator of intestinal gene expression and also

regulates vitellogenin expression through a distinct VPE-2

promoter element [23].

The six vitellogenin genes encode the C. elegans yolk proteins,

which are utilized for growth and development of progeny. The C.

elegans vitellogenin proteins appear to be toxic in old age, as

knockdown of vit-2 and vit-5 by RNAi results in increased lifespan

[39]. During the self-fertile reproductive phase of hermaphrodites

(through day five of adulthood [44]), the vitellogenin proteins are

removed from the mother through egg-laying. After self-fertile

reproduction ends at day five, vitellogenins remain necessary for

reproduction by cross-fertilization, which occurs up to day 13 [45].

In the absence of cross-fertilization, vitellogenins accumulate in the

body cavity, are subjected to oxidative damage and ultimately

become one of the most prevalent proteins in aggregates late in life

[5,46,47]. Similar to C. elegans, vitellogenin proteins in Drosophila

form aggregates and accumulate oxidative damage in old age [48].

Thus, decreased vitellogenin protein accumulation in the body

cavity presents one downstream effect of unc-62 knockdown that

may contribute to extended longevity.

A second mechanism that may link unc-62 RNAi to the aging

process is through allocation of intestinal transcriptional resources.

We observe a general increase in expression of intestinal genes

upon unc-62 RNAi. Previous microarray studies have indicated

that intestinal genes show a general decrease in expression with

age [10,49], and unc-62 RNAi has a particularly strong effect on

these age-regulated intestinal genes. Thus, while unc-62(+) is

necessary for intestinal expression of vitellogenins that are

produced to provide food for developing embryos, it leads to

repression of other intestinal genes. This is reminiscent of the

disposable soma theory of aging, in which resource allocation

between the soma and the germ-line provides a balance between

maternal health and the health and number of progeny [50].

In contrast to the vitellogenins that are directly bound and

activated by UNC-62, most of the unc-62-repressed intestinal genes

are not directly bound by UNC-62. One possible mechanism for how

unc-62 could indirectly repress these genes involves transcriptional

quantified in young but not detected in old intestines; for these transcripts, age-downregulation was calculated using a Ct value of 40 as an upper
bound of old intestinal expression. (B) unc-62 activates four of five class N targets in old intestines. For the five UNC-62 adult targets that increased
with age by more than two-fold, we analyzed expression in day 1, day 15 control, and day 15 unc-62 RNAi micro-dissected intestines (two biological
replicate samples each). (Left) Schematics for these five genes indicates gene structures (in blue), as well as associated UNC-62 binding sites in young
adult (red) ChIP-seq. All binding sites shown were factor-specific and significant at q-value 1025 (**). (Right) Expression fold-change was calculated
using a beta-tubulin control as before, and are shown relative to the average expression between young intestine replicates. For four of the five (tsp-
1, max-1, ins-7, and T05B11.1), expression in old intestines was diminished when unc-62 was knocked down. unc-62 RNAi had no effect on stdh-1
expression in old intestines. Although the binding site overlapping the 39 end of tsp-1 was associated with tsp-1 using our analysis pipeline, we found
that tsp-2 showed a similar expression pattern in dissected intestines (Figure S10). (C) unc-62 RNAi activates activity of main insulin pathway target
DAF-16/FOXO. We quantified expression of sod-3:GFP, which is a reporter of DAF-16 activity [40]. Approximately 25 worms were imaged for each
aging timepoint (x-axis), and fluorescence in the head (y-axis) was quantified using ImageJ. Error bars indicate standard error of the mean. (D) unc-62
RNAi extends lifespan in wild-type worms (37% increase in mean lifespan, p,1025), but not in daf-16(m26) mutants (3% increase, p.0.1). X-axis
indicates days of adulthood, and the y-axis indicates percent of worms remaining alive. Similar results were observed in a replicate experiment using
daf-16 RNAi (lifespan data in Table S2).
doi:10.1371/journal.pgen.1003325.g007
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resources in the intestine. As vitellogenins are among the most highly-

expressed transcripts in the worm genome, silencing of vitellogenins

upon unc-62 RNAi would increase the availability of transcriptional

machinery for expression of other genes in the intestine. In this

model, unc-62 would provide a molecular mechanism through which

the hermaphrodite intestine allocates transcriptional resources for

vitellogenin expression to provide for progeny at the expense of

general expression of other intestinal genes that help to maintain

somatic health of the mother. The general increase in intestinal

expression would not be expected upon RNAi of the vitellogenins

themselves, as RNAi would not block vitellogenin gene transcription

but rather silence protein production through degradation of

vitellogenin mRNA. We do not yet know whether the general

increase in intestinal expression that we observe upon unc-62 RNAi

involves only the increased availability of general transcriptional

resources, or whether it also requires the activity of specific intestinal

regulators (e.g. other transcription factors such as ELT-2).

In addition to vitellogenins, there are many other genes that are

bound by UNC-62 in young adults that decrease expression with

age in the intestine. However, it is not clear whether age-related

decline of these other targets is caused by decreased levels of unc-

62(7a) or by altered activity of other transcriptional regulators.

Using RNA-seq, we found that few of these direct target genes

showed changes in expression in unc-62 RNAi worms, suggesting

either that UNC-62 does not regulate their expression or that our

RNA-seq method was not sensitive enough to detect changes in

their expression. This apparent incongruity between transcription

factor binding and either activation or repression is not unique to

UNC-62, as many other transcription factors in various species

have shown a low overlap between genes that are directly bound

and whose expression is responsive to over-expression or

knockdown of that transcription factor [51,52,53]. Further studies

will be required to explore whether UNC-62 binding plays a role

in age-regulation of these other genes.

Although our analysis largely focused on the intestine, genetic

experiments indicate that activity of unc-62 in the hypodermis may

be important for specifying lifespan. Reduction of unc-62 activity

specifically in the hypodermis extends lifespan, but the targets that

are directly activated by UNC-62 in the hypodermis are not

known. However, the indirect targets of UNC-62 generally

decrease expression with age and include a substantial fraction

of hypodermal collagen genes. It remains unclear whether altered

collagen expression with age is due to altered activity of unc-62

itself or additional co-factors.

An insulin-like gene increases expression and is activated
by unc-62 in the aged intestine

A third way that unc-62 can modulate longevity is via its role in

the aberrant expression of genes in the intestine in old animals. Our

analysis identified a set of five class N UNC-62 target genes that

were expressed primarily in neuronal tissues during development,

but that increased expression in the intestine as animals grow old.

One such gene that is decreased in expression in aged intestines

upon unc-62 RNAi treatment is known to contribute to extended

longevity, as insulin INS-7 is linked to aging through its role as a

signaling molecule in the insulin/IGF signaling pathway [39]. ins-7

is predominantly expressed in neuronal tissues during development,

but increases expression in the intestine with age [36]. In the insulin

signaling pathway, insulin binding to the DAF-2 insulin/IGF-1

receptor turns on a signaling cascade that represses the activity of

the DAF-16/FOXO transcription factor. ins-7 has been shown to

repress the activity of the insulin signaling pathway, as knockdown

of ins-7 increases lifespan as well as nuclear localization and activity

of DAF-16 [36]. We show that ins-7 is directly activated by UNC-62

in old adult intestines, that intestinal ins-7 limits lifespan, and that

unc-62 RNAi represses ins-7 and leads to increased DAF-16 activity

in old age. These results indicate that knockdown of unc-62 allows

DAF-16 to remain active and to benefit aged animals. The results

showing that unc-62 is required for expression of ins-7 in old worms

are particularly intriguing in light of the previous finding that

intestinal ins-7 not only represses DAF-16, but that DAF-16 also

represses ins-7 [36]. Thus, the increase of ins-7 with age appears to

trigger a double negative feedback loop that would be prevented by

the knockdown of ins-7 upon unc-62 RNAi.

If activation of DAF-16 by unc-62 RNAi in old worms is a major

cause for extended longevity, then mutations in daf-16 should

either partially or completely suppress the longevity phenotype of

unc-62 RNAi. Our experiments indicated that daf-16(m26) fully

suppresses the longevity phenotype of unc-62 RNAi animals

(Figure 7D). However, a previous study by Curran, et al. (2007)

using a mutation (eri-1(mg366)) that increases sensitivity to RNAi

and observed a weaker suppression; in this study, an eri-

1(mg366);daf-16(mgDf47);unc-62 RNAi triple mutant lived 31%

longer than the eri-1(mg366);daf-16(mgDf47) double mutant, but

42% shorter than the eri-1(mg366);unc-62 RNAi double mutant

[17]. It is possible that this discrepancy is due to the use of the eri-

1(mg366) mutation, as this mutation enables RNAi to affect

neuronal tissues that are otherwise insensitive. If so, this could

suggest an additional role for unc-62 mediating lifespan in neuronal

tissues.

unc-62 activates four of the five class N genes that increase

expression in the intestine in old age. However, it is unclear

whether the increase in expression of these genes with age is

caused by changes in UNC-62 activity per se. Neither of the unc-62

splicing isoforms appear to increase expression with age in the

intestine; unc-62(7a) decreases with age, and we did not observe

expression of unc-62(7b) (or any other unc-62 isoforms) in the

intestine. Thus, it appears that expression of these genes requires

unc-62 activity, but that their increase in expression with age may

be driven by an additional regulator.

The eight class N genes that we tested in this work are a small

amount of the total such genes in the genome. Therefore, it is

likely that there are many more class N targets with similar

behavior that could also contribute to modulation of lifespan by

unc-62. These results suggest that the old intestine is not simply

altered by accumulation of damage or decreased expression of

intestinal genes. Instead, the old intestine also appears to differ

from the young intestine by an increased expression of class N

genes. Because their expression appears to be detrimental, it seems

unlikely that age-dependent expression of class N genes is

evolutionarily selected. Rather, the onset of class N gene

expression in old worms may occur at an age that is beyond the

force of natural selection, when there may not be sufficient

selective pressure in aged animals to suppress deleterious changes

in gene networks.

Links between development and aging
Recent evidence indicates that transcriptional changes during

aging are not only a consequence of damage accumulation, but

also reflect altered activity of developmental regulators. Analysis of

aging of the human pre-frontal cortex suggests that the majority of

age-dependent changes in expression are not unique to aging, but

rather mirror both reversals and extensions of developmental

expression patterns [54]. In mice, an age-dependent increase in

Wnt signaling is associated with a shift from myogenic to

fibrogenic lineage phenotypes among mouse muscle stem cells,

which is abrogated by the addition of Wnt antagonists [55]. In C.

elegans, a regulatory circuit in the hypodermal tissue involving three
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GATA transcription factor genes, elt-3, elt-5, and elt-6, appears to

not only modulate lifespan but is also linked to altered expression

of target genes with age [10]. Expression of the elt-5 and elt-6

GATA transcription factors increase with age, leading to a

decrease in expression of the elt-3 GATA factor. Lifespan is

increased in mutants in which elt-3 expression remains high in old

age, suggesting that the age-dependent decrease of elt-3 expression

is detrimental to longevity. As the elt-5, elt-6, and elt-3 circuit also

plays a key role in specifying the hypodermal fate during

development [56], these results suggest that mis-regulation of a

key developmental pathway in the hypodermis during aging

underlies intrinsic aging of the organism [10].

UNC-62 Homothorax/Meis provides a further example that

developmental and reproductive activities of certain transcription

factors are not stable in adults, and are not optimized for longer

lifespan. To ameliorate or even reverse the aging process, it is not

enough to simply prevent damage accumulation. Rather, it may

also be necessary to correct developmental regulators responsible

for intrinsic changes in the aging transcriptome that limit lifespan.

Materials and Methods

ChIP–seq data and analysis
Transcription factor (TF) target identification from chromatin

immunoprecipitation followed by high-throughput sequencing

(ChIP-seq) data was obtained from the modENCODE consortium

(http://submit.modencode.org/submit/public/list or http://data.modencode.

org/) [18,20], using datasets available as of 04/30/12. TF Binding

sites as well as read density files were mapped to WS220

coordinates using scripts available from WormBase (ftp://ftp.

sanger.ac.uk/pub2/wormbase/software/Remap-between-versions/) [57].

All 98 ChIP-seq experiments (profiling targets of 57 transcrip-

tion factors in one or multiple developmental stages) that

contained at least 100 binding sites meeting a q-value,1025

significance cutoff were used. ‘Factor-specific’ binding sites of a

transcription factor were defined as those that were significantly

enriched in the given factor, and had no position within the

binding site that was enriched in 9 or more other transcription

factors (out of the 57 total) (Figure S1A–S1B). Binding sites were

associated with all transcripts (obtained from Wormbase release

WS220) if the point of maximal read density within the peak

occurred within the gene body, or was less than 3 kb upstream of

the annotated transcription start site (for cases where the upstream

intergenic distance was less than 3 kb, only the region up to the

neighboring gene was used). Genes significantly altered in

expression with age (p-value,1024) were obtained from [10],

with updated mapping of probes to transcripts (http://nemates.org/

MA/primers/new_primer_names.html).

Significance of overlap between ChIP-seq targets and various

gene lists was determined by a Fisher’s Exact test on the 262

contingency table using the R statistics program (version 2.11.1),

approximated with a Chi-Square test for datasets with expected

and observed overlaps greater than 5. P-values for Chi-Square

tests were obtained using the Perl Statistics::Distributions module.

ChIP–qPCR validation
To validate UNC-62 association with vit-2 and vit-6 promoters

in adults, ChIP-qPCR was performed on independently generated

adult lysates from strain OP600. ChIP was performed using the

protocol and GFP antibodies generated by the modENCODE

project [18], except for the replacement of sepharose beads with

Invitrogen Protein G Dynabeads. qPCR primers were generated

that flanked the peak of read density from UNC-62 YA ChIP-seq

for the vit-2 and vit-6 promoter regions, with three regions bound

by hypodermal transcription factor ELT-3 (B0222.8) and pharyn-

geal and intestinal TF PHA-4 (F32A5.4 and F35G2.1) serving as

negative controls. For each, enrichment was determined relative to

a non-immunoprecipitated input sample.

To identify sequence motifs in UNC-62 binding sites, the 100

base window surrounding the position of maximum ChIP-seq read

density in each UNC-62 binding site was identified as the core

binding region. To compare these regions against promoter

sequences associated with genes with similar expression and tissue-

specificities, 200 bp windows on either side of this core region

served as the negative control. A de novo motif search for enriched

7-mers was performed using the RSAT program [58], with motif

logos generated using WebLogo [59]. To validate the motif,

frequencies of the ATTGACA 7-mer sequence were calculated for

core and flanking regions, and enrichment calculated by Fisher’s

Exact test. As an additional control, this analysis was repeated

using Fisher-Yates-shuffled core regions as the negative control,

yielding similar enrichments.

RNA–seq profiling of unc-62 knockdown
RNA-seq quantification upon unc-62 RNAi was performed

using the sterile TJ1060 (fem-15(b26); spe-9(hc88)) strain that has

previously been used for transcriptome studies in adult worms in

order to avoid isolating mRNA from developing embryos [10,60].

Three independent biological replicate batches of approximately

,10,000 sterile hermaphrodites were grown at the non-permissive

(25uC) temperature until the first day of adulthood, at which point

half were placed on plates seeded with unc-62 RNAi and half on

empty vector RNAi. The worms were then grown for 3 days at

20uC, after which RNA was isolated by Trizol extraction followed

by phenol-chloroform purification. Poly-A-purified RNA was then

isolated using the Qiagen Oligotex Mini kit, and 39 end enriched

RNA-seq libraries were prepared in accordance with the 39SEQ

method. 400 ng of mRNA was heat-sheared for 7.5 minutes at

85uC to obtain 200–500 bp fragments, and barcoded oligo-dT

primers were used to generate cDNA for mRNA fragments

located at the 39 end of transcripts. After second strand synthesis,

adaptors were ligated to the 59 end, and PCR primers (including

the barcode sequence) were used in order to enable multiplexed

sequencing. The three replicate libraries from worms grown on

unc-62 RNAi were then pooled and sequenced in a single flow-cell

lane on the Illumina single-end 36 bp HiSeq 2000 platform, with

the three libraries from worms grown on control RNAi pooled and

sequenced in an additional lane.

A total of ,71 million and ,73 million post-filtering reads were

obtained for control and unc-62 RNAi respectively, with roughly

equal proportions coming from the three biological replicates

(Table S1). Reads with 10 or more consecutive A’s or T’s were

removed as likely amplification artifacts, and reads were then

mapped to the Wormbase reference WS215 genome and

transcriptome using Bowtie version 0.12.7 [61], using the options

‘‘-a –best –strata -v 2’’ to obtain all genomic position(s) to which

the read mapped with the least number mismatches (up to 2

allowed). Greater than 14 million reads for each independent

replicate were obtained that mapped uniquely to the sense strand

of WS215 annotated transcripts (with more than 85% of post-filter

reads mapping to C. elegans in each experiment)(Table S1). To

determine expression for each transcript in the WS215 Wormbase

annotation, we counted the number of reads that uniquely

mapped to the sense strand (i.e., they did not map equally well

elsewhere in the genome). For genes with multiple annotated

isoforms, only the transcript with the highest average expression

across the six experiments was used for further analysis.
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RNA-seq datasets have been submitted to the Gene Expression

Omnibus under series GSE39574 (samples GSM971870-

GSM971875).

Significance analysis by rank products
Identification of transcripts with consistently altered expression

in all three biological replicates was patterned on the Rank

Product method previously described for microarray analysis [27].

To avoid technical noise among transcripts with low expression,

the subset of 7333 genes for which 10 or more sequencing reads

were observed either in all three empty vector libraries, or all three

unc-62 RNAi libraries, was obtained, and a pseudocount of one

read was added to each gene in each condition. For each of the

three biological replicates, genes were then ranked based on the

observed expression fold-change between unc-62 RNAi and

control. The rank product for each gene was then calculated as

the product of that gene’s ranks in each of the three replicate

experiments. Repeating this approach on10,000 random permu-

tations of the ranks for each of the three experiments converted

these rank product values to E-values and Percent False Positive

(PFP) values as previously described [27]. At a PFP cutoff of 10%,

116 genes with decreased expression and 69 genes with increased

expression upon unc-62 RNAi were obtained. Three genes that

met this false-positive criteria did not change consistently across

the three biological replicates (i.e., were not in the top third of fold-

changes in each replicate) and were discarded, yielding 115 genes

decreased and 67 genes increased upon unc-62 RNAi.

Analysis of genes altered in expression upon unc-62 RNAi
Significantly increased and decreased genes upon unc-62 RNAi

were compared against various gene lists as described. For all

analyses, genes were discarded if they were not present in the 7333

genes with reliable expression in RNA-seq experiments, or were

not assayed in the published dataset (as they were either absent on

the microarray or were not yet annotated). For analysis of genes

that decrease upon unc-62 RNAi, a dataset of genes with enriched

expression in hypodermis (during L3-L4 larval stages) was used

[34], and collagen genes were annotated as those belonging to

NCBI KOG3544. For analysis of genes that increase upon unc-62

RNAi, intestine-enriched genes were defined as those with

significantly enriched expression in intestine relative to whole-

worm controls from experiments profiling intestinal gene expres-

sion in late embryos [34], L2 larvae [34], L4 larvae [33], or adults

[23]. Genes that decrease expression with age were obtained from

Budovskaya, et al. [10]. Kolmogorov-Smirnov tests were per-

formed in MATLAB (version R2010b).

Intestine dissection
Intestine dissections were performed as described by McGhee, et

al. (2007) [23] with slight modifications. Adult worms were placed

in ,10 uL of buffer containing 100 ml of PBS–EDTA–ATA

(125 mM NaCl, 16.6 mM Na2HPO4, 8.4 mM NaH2PO4,

0.1 mM EDTA, 1 mM aurin tricarboxylic acid), supplemented

with 0.1 uL of Superasin. 27G1/2 needles were used to cut below

the pharyngeal bulb, and intestines were allowed to extrude for

,2–3 minutes. Single intestines were then isolated with a pulled

capillary tube, washed 3 times with PBS-EDTA-ATA-Superasin,

and placed in Buffer RLT Plus + Beta-mercaptoethanol (Qiagen

RNeasy Plus Micro Kit). RNA was isolated from batches of

approximately 100 intestines using the RNeasy Plus Micro Kit.

RNA quality for one young and one old sample was validated

using the RNA 6000 Pico assay on the Bioanalyzer 2100 (Agilent),

obtaining RNA integrity numbers of 10 and 9.6 respectively.

To identify class N (neuronal-enriched) young adult UNC-62

targets, we obtained twenty lists of genes with specific or enriched

expression in either specific neuronal subtypes or in all neurons

[34,62,63,64,65]. To determine whether UNC-62 binding in

young adults correlated with altered expression in intestines with

age, a negative control set of genes with identical expression

criteria were identified that were associated with UNC-62 binding

sites in L2 or L3 but not YA. The initial experiment compared a

pair of samples composed of ,100 intestines from young (day 1) or

old (day 15) worms. Transcripts that were undetectable or did not

show reliable signal across qPCR technical replicates in young

intestines were discarded, as it cannot be determined whether

these represented failed primer pairs or if these transcripts are

simply never expressed in intestines at levels reliably detected by

qPCR. Screening of 9 class N and 31 control genes yielded 7 class

N and 6 control genes that were reliably detected in both young

and old intestines, with an additional 1 class N and 4 control genes

that (presumably due to age down-regulation) were detected in

young but not old intestines. For these 5, a Ct value of 40 was used

as an upper bound estimate of old adult expression. For each,

expression was calculated relative to previously described control

transcript tbb-2 (identical results were observed using alternative

control let-70) [66]. Normalization was performed as previously

described [67].

Further experiments to test the effect of unc-62 RNAi were

performed on two biological replicates of ,100 intestines for

young control (day 1), old control (day 15 grown on empty vector

RNAi), and old unc-62 knockdown (day 15 grown on unc-62 RNAi)

respectively. For old samples, worms were grown on normal

(OP50) E. coli until day 1 of adulthood, and then shifted to RNAi

bacteria (as described for lifespan experiments). For analysis using

these samples, transcript abundance was calculated using a 256-

fold dilution curve performed on cDNA prepared from whole-

worms. Technical triplicates of each qPCR reaction were

performed.

Strains
To generate the unc-62:GFP translational reporter, fosmid

WRM061dC01 was obtained from Geneservice, and an eGFP

tag was inserted at the C-terminus of unc-62 by recombineering

(Figure 1C) [68]. This reporter was integrated by biolistic

bombardment, yielding strain OP600 (unc-119(ed3);Is[unc-

62:GFP;unc-119(+)]. In order to better visualize intestinal expres-

sion, this strain was crossed with the glo-4(ok623) strain that lacks

gut autofluorescence, and Is[unc-62:GFP;unc-119(+)];glo-4(ok623)

worms were isolated in the F2 generation (strain SD1897).

To generate isoform-specific reporters for unc-62(7a) and unc-

62(7b), a single base in either exon 7a or 7b was mutated to

generate an in-frame stop codon (Figure 2A). This approach

required the insertion of a Kanamycin cassette (on the reverse

strand) in the constitutively spliced intron between exons 8 and 9

to aid selection for the mutated variant. Biolistic bombardment

was used to integrate these fosmids, yielding Is[unc-62(7a):GFP;unc-

119(+)];unc-119(ed3) (strain OP601) and Is[unc-62(7b):GFP;unc-

119(+)];unc-119(ed3) (strain OP602) worms. These strains were

similarly crossed to glo-4(ok623) worms to generate Is[unc-

62(7a):GFP;unc-119(+)];glo-4(ok623) (strain SD1890) and Is[unc-

62(7b):GFP;glo-4(ok623) (strain SD1898) which were used for

fluorescence measurements.

To determine whether the full-length translational fusion was

functional, unc-119(ed3); Is[unc-62:GFP;unc-119(+)] was crossed

into unc-62(s472) animals, and unc-62(s472); Is[unc-62:GFP;unc-

119(+)] worms were isolated in the F2 generation using a PCR

screening approach, yielding healthy strain SD1880. To further
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validate wild-type function, the full unc-62:GFP as well as the

isoform-specific unc-62(7b):GFP fusions were crossed into unc-

62(e644) worms containing a loss of function mutation in exon 7b,

yielding (unc-62:GFP;unc-62(e644)(strain SD1887) and unc-

62(7b):GFP;unc-62(e644)(strain SD1879) that were isolated by

PCR screening of the F2 generation (using allele-specific

oligonucleotides targeting the e644 mutation). Both of these

rescued strains have viable phenotypes.

Five tissue-specific RNAi strains from previous publications

were used to test the tissue of action for unc-62: intestine-specific

RNAi strain OLB11, hypodermal-specific RNAi strain NR222,

muscle-specific RNAi strain NR350, neuronal- and vulval

precursor cell-specific RNAi strain NK742, and uterine-specific

RNAi strain NK640. To validate tissue-specific knockdown for

intestine-specific and hypodermal-specific strains, these strains

were crossed with the unc-62:GFP reporter, yielding SD1954

(Is[unc-62:GFP; unc-119(+)]; rde-1(ne219); Is[lin-26p:rde-1; lin-

26p:nls:GFP; rol-6(su1006)]) and SD1955 (Is[unc-62:GFP; unc-

119(+)]; rde-1(ne219); Is[elt-2p:rde-1; rol-6(su1006)]). These worms

were then placed on control or GFP RNAi as L1 larvae, and

imaged as L4 larvae. To assay the effect of unc-62 RNAi on daf-16

activity, we used a previously-described reporter that expresses

cytoplasmic GFP from the sod-3 promoter [69].

Lifespan analysis
General C. elegans techniques as well as lifespan experiments

were performed as previously described [10]. Unless otherwise

noted, lifespan experiments were performed by placing adult

worms (with visible eggs) on NGM plates containing 30 uM 5-

fluoro-29-deoxyuridine (FUDR). Deaths before day 7 of adulthood

were censured. Log-rank tests were performed using OASIS [70].

RNAi experiments
RNAi clones used were obtained from the Ahringer RNAi

library [71] and sequenced to verify proper insertions. To generate

RNAi against exons 7a and 7b of unc-62, these exons (as well as

,50 bp of flanking introns) were PCR amplified and inserted into

the L4440 vector at the EcoRV restriction site, and transformed

into HT115(de3) E. coli. RNAi knockdown experiments in adults

(including lifespan experiments) were performed on NGM plates

supplemented with 30 uM FUDR, 100 ug/mL Ampicillin, and

2 mM IPTG to induce dsRNA expression.

Supporting Information

Dataset S1 Rank products analysis of unc-62 RNAi and control

RNA-seq experiments. Rank products analysis is included for all

7333 genes with 10 or more reads observed in all three control, or

all three unc-62 RNAi, RNA-seq replicates. Each gene was ranked

in each biological replicate experiment according to the observed

fold-change in unc-62 RNAi as compared to control. The product

of ranks across three biological replicates was used to determine

the false-positive rate for observing such reproducible fold-change

(see Figure S5 and Methods). The first worksheet includes all

genes, whereas the following two worksheets include only those

genes reproducibly activated or repressed by unc-62 at a 10% false

positive rate (see Methods).

(ZIP)

Figure S1 Examples of factor-specific and non-specific UNC-62

targets. (A–B) Examples of factor-specific and redundant UNC-62

binding sites are shown in genome browser snapshots. Genes are

indicated in blue at the top, with exons (boxes) and introns (lines)

indicated. Boxes below indicate all regions significantly enriched

(q-value,1025) in 98 ChIP-seq datasets generated by the

modENCODE consortium, with UNC-62 young adult binding

sites in red and all other binding sites in black. (A) An UNC-62

binding site in young adults proximal to vit-2 is factor-specific; the

binding site is not significantly enriched in other ChIP-seq

experiments. We defined factor-specific targets as those that are

significantly enriched in nine or less transcription factors profiled.

(B) An UNC-62 young adult binding site in the rpl-15 promoter is

not factor-specific, as many other transcription factors also bind to

that region.

(TIF)

Figure S2 UNC-62(7a) expression decreases with age. (A) UNC-

62(7a):GFP fluorescence was quantified in the first pair of

intestinal nuclei at various ages. Bar height indicates average

fluorescence observed per intestinal nuclei for 32–44 worms

quantified at each age, with error bars indicating standard error of

the mean. We validated these results in an independent sample

(right). In all three cases, day 1 adults had significantly higher

expression than day 3, 8, or 12 (each p,1024 by Student’s t-test).

(B) unc-62(7a) mRNA decreases by qRT-PCR. RNA from ,75

day 2 and day 8 adult worms (grown on empty vector RNAi) was

purified, and qPCR was performed using primers specific to exon

7a of unc-62. Each bar indicates average expression from a

biological replicate, and error bars indicate the standard deviation

among two qPCR technical replicates. For each, expression was

first normalized to an htz-1 control, and then calculated relative to

unc-62(7a) at day 2 of adulthood.

(TIF)

Figure S3 Tissue-specific RNAi fluorescence validation. To

verify that the intestine- and hypodermal-specific RNAi strains

function as intended, we crossed in the unc-62:GFP reporter.

Worms were then placed on control and GFP RNAi as L1 larvae,

and imaged as L4 larvae. (A) GFP RNAi in intestine-specific RNAi

strain SD1855 (generated from strain OLB11) does not affect

hypodermal (hyp.) or neuronal/ventral nerve cord (vnc) expression

of unc-62:GFP, but decreases unc-62:GFP expression in the intestine

(int). Although most intestinal cells showed complete loss of unc-

62:GFP expression, some nuclei still had visible unc-62:GFP

expression (as indicated). (B) GFP RNAi in hypodermal-specific

RNAi strain SD1854 (generated from strain NR222) does not

affect intestinal or neuronal/ventral nerve cord expression of unc-

62:GFP. However, hypodermal expression of unc-62:GFP was no

longer visible.

(TIF)

Figure S4 Lifespan analysis of unc-62. (A) Wild-type (N2) worms

were grown on control bacteria, and then shifted to unc-62 at

various days of adulthood to determine the time of effect of unc-62

knockdown. unc-62 RNAi significantly increased lifespan when

begun at days 1, 3, or 5 of adulthood (p,1025, p,1025, and

p = 0.0003 respectively). RNAi of unc-62 beginning at days 7 or 9

of adulthood did not significantly extend lifespan (p = 0.15 and

0.63 respectively). As the rate of feeding declines significantly with

age, we do not know whether the lack of effect observed at day

seven indicates that unc-62 no longer limits lifespan or simply

reflects the weakened effect of RNAi by feeding. (B) Lifespan of

knockdown of unc-62, ins-7, and combined RNAi targeting both

unc-62 and ins-7 was performed in a strain expressing rde-1 from

the elt-2 intestinal promoter (strain OLB11). Intestine-specific ins-7

knockdown extends lifespan 8.3% (p,1025 by log-rank test).

Combined RNAi targeting both unc-62 and ins-7 showed a 6.1%

increase over unc-62 alone (p = 0.0347), suggesting that unc-62

RNAi by itself may not completely silence ins-7 expression in the

intestine. (C) RNAi of unc-62 in germ-line mutant glp-1(e2141)

worms significantly extends lifespan (28%, p,1025). To remove
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the germ-line, glp-1(e2141) worms were grown at the restrictive

temperature (25uC) until the first day of adulthood, and then

shifted to 20uC.

(TIF)

Figure S5 Rank products method for identifying differential

expression in biologically replicated RNA-seq experiments. In

order to identify genes that were consistently increased or

decreased in expression upon unc-62 RNAi, we developed an

analysis method based on the Rank Products method previously

described for microarray analysis [27]. (A) We performed three

independent experiments in which we fed worms either unc-62

RNAi or control bacteria, isolated mRNA and generated RNA-

seq libraries, and sequenced these libraries on the Illumina HiSeq

platform. For analysis, we discarded genes that were not covered

by at least 10 sequencing reads in either controls or unc-62

knockdown across all three replicates (red arrows). (B) For each

gene in each replicated experiment, the fold-change was calculated

between experimental (unc-62 RNAi) and control. These fold-

changes were then ranked for each replicate. (C–D) A rank

product (RP) was then calculated for each gene as the product of

the fold-change ranks in each replicate, and converted to a

probability. The ranks were then permuted 10,000 times to

generate the expected number (E-value) of genes observed with a

probability less than or equal to the observed RP. This E-value

could be converted to a false-positive rate by dividing by the

number of genes actually observed to have such a RP probability.

(C) Genes were ranked by increasing fold-change upon unc-62

RNAi (starting with the most down-regulated gene) to calculate a

false-positive rate for decreased expression upon unc-62 RNAi. (D)

Genes were ranked by decreasing fold-change upon unc-62 RNAi

(starting with the most up-regulated gene) to calculate a false-

positive rate for increase expression upon unc-62 RNAi.

(TIF)

Figure S6 ChIP-qPCR validates UNC-62 association at vit-2

and vit-6 promoters in young adult worms. OP600 (unc-62:GFP)

worms were grown on peptone plates until adulthood, at which

point they were switched to NGM plates containing 30 mM

FUDR until day 4 of adulthood. ChIP was performed using the

protocol from the modENCODE consortium [18], and qPCR was

performed for vit-2 and vit-6 promoter regions as well as three

regions bound by other transcription factors but not UNC-62

(B0222.8, F32A5.4, and F35G2.1). For each, fold-enrichment was

calculated by comparing first to a non-immunoprecipitated input

sample, and then to the first control promoter region (B0222.8).

Bars indicate mean, and error bars indicate standard deviation

from technical triplicate qPCR measurements.

(TIF)

Figure S7 De novo motif searches identify an ATTGACA motif

among UNC-62 adult binding sites. (A) Two of the three motifs

identified in a de novo motif search of UNC-62 young adult binding

sites with RSAT [58] contained an ATTGACA motif as the

prominent sequence motif. In this analysis, the core 100 nt regions

of the UNC-62 factor-specific binding sites (centered upon the

point of maximal read density within the peak) were compared to

200 nt regions flanking this core region. Motif 2 does not contain

the conserved TGACA Homothorax motif [31], but instead

resembles the GATA binding site of master intestinal regulator

ELT-2 [23]. (B) The ATTGACA 7-mer is the most significantly

enriched 7-mer sequence among UNC-62 binding sites. (top) The

fold-enrichment of all 7-mers was compared (top) in the core

region as compared to the flanking regions of UNC-62 binding

sites, or (b) the core region as compared to core region sequences

randomly shuffled 100 times (using Fisher-Yates shuffling).

Enrichment p-values were determined by Fisher’s Exact test.

(TIF)

Figure S8 Intestine-enriched genes are uniquely shifted towards

higher expression upon unc-62 RNAi. Histograms indicate the

percent of these gene sets with indicated fold-changes in expression

(shown in 0.1 (log2) increments) in RNA-seq of adult worms

exposed to unc-62 RNAi. Datasets were obtained from previous

publications for genes with enriched expression in (A) muscle cells

[33,34,72], (B) neuronal cells [34,62,63,64,65], and (C) intestinal

cells [23,33,34], as well as (D) the subset of intestine-enriched

genes that also decline in expression with age [10]. Intestine-

enriched and age-decreased, intestine-enriched genes are signifi-

cantly shifted towards increased expression upon unc-62 RNAi (p-

value,10220 by Kolmogorov-Smirnov test), whereas muscle- and

neuronal-enriched genes are not (p.0.01 by Kolmogorov-

Smirnov test).

(TIF)

Figure S9 Dissected intestines are enriched for intestine-specific

transcripts and depleted for non-intestinal transcripts. Transcripts

include two ubiquitously expressed reference genes (let-70 and tbb-

2), two intestine-specific positive controls (ges-1 and vit-6), and four

non-intestinal genes: pharynx-specific myo-2, germline-specific pie-

1, neuronal unc-119, and hypodermis and gonad-expressed lin-26.

RNA was isolated from micro-dissected intestines as described in

Methods, and reverse transcribed into cDNA for quantification by

qPCR. Bars indicate DDCt values are calculated as (Ctintestine,gene

x-Ctwhole worm, gene x)- (Ctintestine,M7.1-Ctwhole worm, M7.1), using

reference M7.1. All Ct values are averaged from triplicate

technical replicates. Error bars indicate standard deviation of

triplicate technical replicates. * indicates genes that were

undetectable in two of three technical replicates; for these, the

expression in the single amplified replicate was used to estimate

expression. ** indicates genes that did not amplify from the

indicated sample; for these experiments, an upper bound estimate

of expression of 40 cycles was used.

(TIF)

Figure S10 Both tsp-1 and tsp-2 are activated by UNC-62 in old

adult intestines. An UNC-62 young adult binding site (indicated by

the red box) located just upstream of tsp-2 was initially associated

with tsp-1, as the point of maximal read density was located within

the tsp-1 transcript sequence (Figure 7B). We performed qRT-

PCR on RNA isolated from ,150 micro-dissected intestines to

quantify tsp-2 expression. Similar to tsp-1, we found that tsp-2

expression is induced in old adults but not induced to the same

degree in old adults fed unc-62 RNAi. Bars indicate expression in

biological replicate experiments, relative to expression in young

adults (normalized to control gene tbb-2). Error bars indicate

standard deviation from triplicate technical replicates.

(TIF)

Table S1 RNA-seq experiment summary information. Values

indicate number of reads meeting the stated criteria observed from

RNA-seq experiments performed on three biological replicates of

day four adult worms grown either on empty vector control, or

unc-62 RNAi. ‘‘Post-quality filtering’’ indicates reads that did not

contain a stretch of ten or more consecutive A or T nucleotides

(which were discarded as likely artifacts from the reverse

transcription oligonucleotide). Reads were mapped to the

WS215 genome and annotated transcripts with Bowtie (see

Methods), and were then discarded if they mapped with an equal

number of mismatches to multiple positions in the genome. To

simplify downstream analyses, at the final step only reads mapping
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to the sense strand of annotated transcripts were used. ‘‘Vitello-

genin transcripts’’ indicates the number of reads in each

experiment that mapped to the six vitellogenin loci (in this row,

reads were kept if they mapped equally well to multiple

vitellogenin loci but to no other loci in the genome).

(XLSX)

Table S2 Data for lifespan experiments. Each row in the table

describes data from a lifespan experiment described in the text,

grouped by experiments performed at the same time. p-values

were calculated by log-rank test in Oasis [70] as compared to the

first listed empty vector control unless otherwise specified. For all

experiments, worms were grown on OP50 E. coli until the first day

of adulthood and then shifted to bacteria expressing the indicated

dsRNA. For tissue-specific RNAi experiments, the Tissue column

indicates the tissue in which the RNAi pathway is active. For time

of action experiments, worms were shifted to HT115 (empty

vector) bacteria on the first day of adulthood, and then shifted to

unc-62 RNAi bacteria at the indicated day for the remainder of

lifespan.

(XLSX)

Table S3 Genes bound by UNC-62 and differentially regulated

upon unc-62 RNAi. Each row indicates a gene associated with an

UNC-62 binding site in day four young adults that was identified

to be significantly altered upon unc-62 RNAi in the RNA-seq

experiment. Fold-change is shown as the average fold-change from

the three biological replicates (after each experiment was

independently mean-normalized). Distance to TSS indicates the

distance from the annotated transcription start site to the point of

maximal read density within the ChIP-seq peak. For genes with

multiple isoforms, the shortest distance is reported.

(XLSX)
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